

Cautionary Note Regarding Forward-Looking Statements

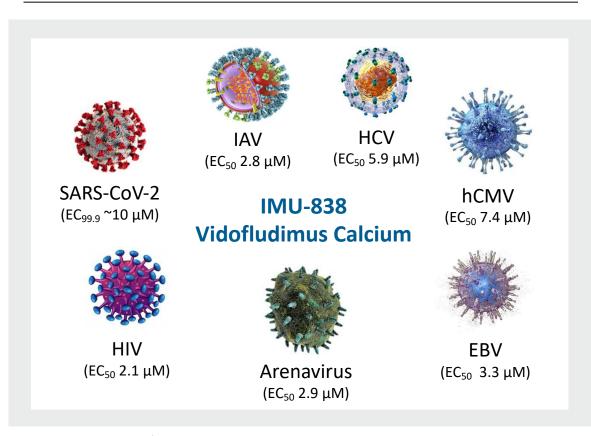
This presentation contains "forward-looking statements" that involve substantial risks and uncertainties for purposes of the safe harbor within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These include statements regarding management's intentions, plans, beliefs, expectations or forecasts for the future, and, therefore, you are cautioned not to place undue reliance on them. No forward-looking statement can be guaranteed, and actual results may differ materially from those projected. Immunic undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise, except to the extent required by law. We use words such as "anticipates," "believes," "plans," "expects," "future," "intends," "may," "will," "should," "could," "estimates," "predicts," "potential," "continue," "guidance," and similar expressions to identify these forward-looking statements that are intended to be covered by the safe-harbor provisions of the Private Securities Litigation Reform Act of 1995.

Such forward-looking statements are based on our expectations and involve risks and uncertainties; consequently, actual results may differ materially from those expressed or implied in the statements due to a number of factors, including, but not limited to, risks relating to strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management. Risks and uncertainties that may cause actual results to differ materially from those expressed or implied in any forward-looking statement include, but are not limited to: Immunic's development programs and the targeted diseases; the potential for Immunic's development programs to safely and effectively target and treat the diseases mentioned herein; preclinical and clinical data for Immunic's development programs; the impact of future preclinical and clinical data on Immunic's product candidates; the timing of the availability or data from Immunic's clinical trials; the availability or efficacy of Immunic's potential treatment options that may be supported by trial data discussed herein; the timing of current and future clinical trials and anticipated clinical milestones; Immunic's ability to protect its intellectual property position; Immunic's plans to research, develop and commercialize its current and future product candidates; the timing of any planned investigational new drug application or new drug application; the development and commercial potential of any product candidates of the company; expectations regarding potential market size; developments and projections relating to Immunic's competitors and industry; the clinical utility, potential benefits and market acceptance of Immunic's product candidates; Immunic's commercialization, marketing and manufacturing capabilities and strategy; Immunic's ability to successfully collaborate with existing collaborators or enter into new collaboration agreements, and to fulfill its obligations under any such collaboration agreements; Immunic's ability

Forward-looking statements included in this presentation are based on information available to Immunic as of the date of this presentation. Immunic does not undertake any obligation to update such forward-looking statements except as required by applicable law.

Advanced Clinical Pipeline

Well Differentiated Programs in Various Phases of Clinical Development


Program	Target	Preclinical	Phase 1	Phase 2	Phase 3	Key Milestones		
Vidofludimus Calcium (IMU-838)	DHODH Intestinal Barrier Function	Relapsing Multiple Scleros	sis (RMS) – ENSURE Trials	 Initial phase 1b celiac disease data of IMU-856 expected in Q2/2023 				
		Progressive Multiple Scler	osis (PMS) – CALLIPER Tria	I		 Interim analysis of CALLIPER trial in PMS planned after half of the patients completed 24 weeks of treatment, estimated for H2/2023 		
		Illegrative Colitic (UC) C	ALDOSE 1 Trial			 CALLIPER trial estimated to readout end of 2024 		
		Ulcerative Colitis (UC) – C.	ALDOSE-1 Irial			 Interim analysis of first ENSURE trial in RMS planned after approximately half of the events occurred, estimated for late 2024 		
		Celiac Disease				 ENSURE-1 trial estimated to readout end of 2025, ENSURE-2 soon thereafter 		

DHODH Inhibition Provides Broad-Spectrum Antiviral Activity Against Different Pathogenic Viruses

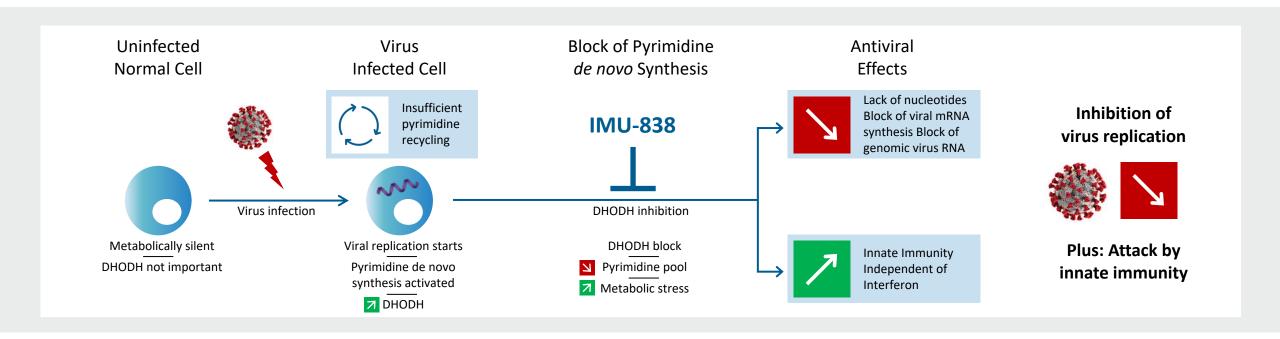
Antiviral Activity With EC_{50} Values in Single Digit μM Range

Vidofludimus Calcium Inhibits Virus Replication and Reactivation

- Viruses rely on the host cell's infrastructure for replication
- Inhibition of DHODH leads to a depletion of pyrimidine nucleotides that are needed for the
 - Production of viral RNA and DNA (virus genome)
 - Production of viral proteins (via mRNA)
- By targeting the host cell metabolism, vidofludimus calcium has shown to be active against different RNA and DNA viruses in vitro

Left: Hahn F et al. (2020) Viruses. 12:1394 / Right: Eur J Clin Invest. 2020;50:e13366

Vidofludimus Calcium: Summary of Rationale in COVID-19



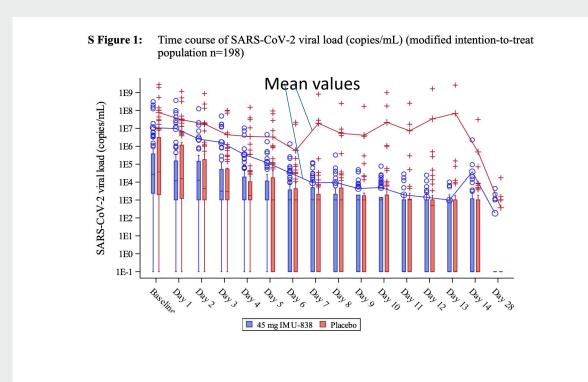
Dual mode of action: orally available DHODH inhibitor with both, antiviral and anti-inflammatory effects

Host-based mechanism avoids dependence on specific viral proteins and, therefore, offers broad-spectrum antiviral activity

Vidofludimus Calcium Reduces Viral Load in COVID-19 Patients

Infect Dis Ther
https://doi.org/10.1007/s40121-022-00690-0

ORIGINAL RESEARCH


Safety and Efficacy of Vidofludimus Calcium
in Patients Hospitalized with COVID-19: A DoubleBlind, Randomized, Placebo-Controlled, Phase 2 Trial

Maria J. G. T. Vehreschild • Petar Atanasov • Kateryna Yurko • Cristian Oancea • Georgi Popov • Valentina Smesnoi • • Gheorghe Placinta • • Hella Kohlhof • • Daniel Vitt • • Evelyn Peelen • • Jelena Mihajlović • • Andreas R. Muehler • • Received: June 3, 2022/Accepted: August 17, 2022

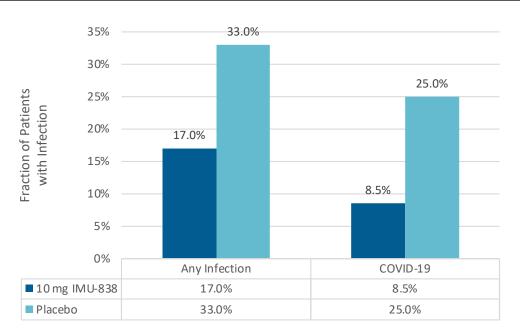
- 223 patients randomized in Europe and the United States
- June to December 2020, 14 days of treatment
- Time to clinical improvement
 - Median: similar for both groups
 - Early treated patients (< 9 days after symptom start): 3.8 days for vidofludimus calcium treated patients in the 75% percentile

Vidofludimus calcium was safe and showed clinical antiviral activity

From day 6 on, vidofludimus calcium shows clear differentiation in viral load in COVID-19 patients

Vehreschild et al., 2022, Infect Dis Ther

Vidofludimus Calcium Showed Interesting Hints for Clinical Anti-SARS-CoV-2 Activity and Maintenance of Humoral Response



Treatment Does Not Interfere With Antibody Development During SARS-CoV-2 Infection

	Day 6		Day 14		Day 28	
	IgA	IgG	IgA	IgG	IgA	IgG
Placebo	84%	88%	94%	94%	97%	99%
Vidofludimus Calcium	86%	93%	97%	97%	95%	100%

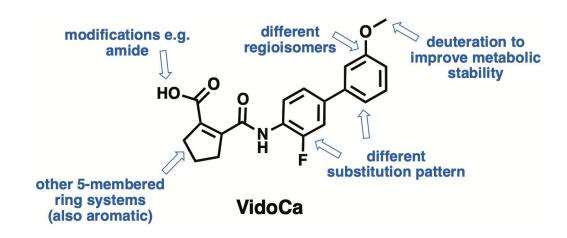
Treatment Corresponds With Decreased Number of Opportunistic SARS-CoV-2 Infections

Phase 2 EMPhASIS Trial in Relapsing-Remitting Multiple Sclerosis

Number of reported COVID-19 cases in Cohort 2

Phase 2 CALVID-1 Trial in COVID-19

Proportion of patients with anti-SARS-CoV-2 IgA or IgG antibodies


IgA: immunoglobulin A; IgG: immunoglobulin G

DHODH Inhibitors 2.0: Successful Optimization Process

Compound Optimization Options

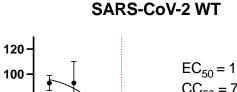
Topics For Improvement

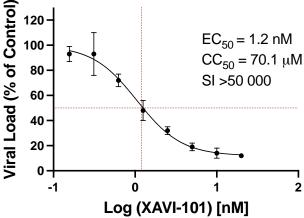
- Improved DHODH inhibition
 - Addressing strong species specificity
- Enhanced cellular antiviral activity
- Improved drug-like properties
 - Solubility
 - ADME parameters
 - PK properties

ADME: Absorption, Distribution, Metabolism, Excretion; PK: pharmakokinetic

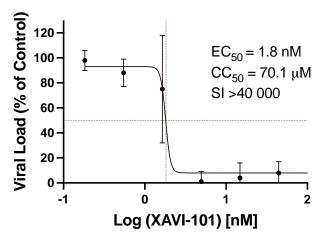
Optimization Significantly Increases Antiviral and Drug-Like Properties

	VidoCa		XAVI-:	101
120 nM		IC ₅₀ hDHODH		1 nM
5 000 nM		IC ₅₀ mDHODH		2 nM
5 200 nM		EC ₅₀ SARS-CoV-2	1 r	
Mouse C _{max} t _{1/2} AUC F	5 mpk (♀) 3440 ng/mL 1.6 h 5740 ng*h/mL 44%	PK in mouse	Mouse C _{max} t _{1/2} AUC F	5 mpk (♀) 6700 ng/mL 2.5 h 25000 ng*h/mL 76%


Cmax: maximum plasma drug concentration; t1/2 = terminal elimination half-life; AUC: area under the curve; F: bioavailability; PK: pharmakokinetics

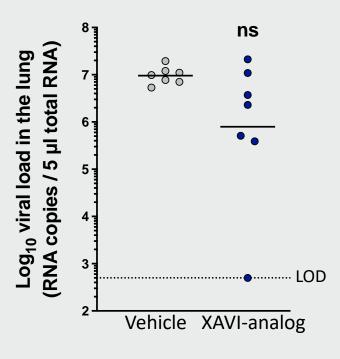


DHODH Inhibition Acts Independent of Virus Mutations and Reduces Viral Load in Infected Mice



XAVI-101 Is Highly Active Against SARS-CoV-2 wt and Omicron Variant

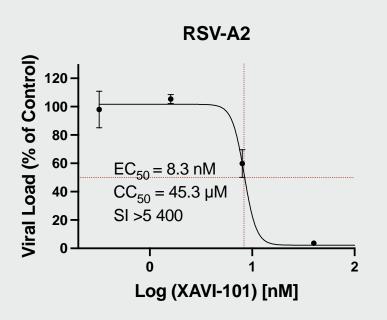
SARS-CoV-2 Omicron

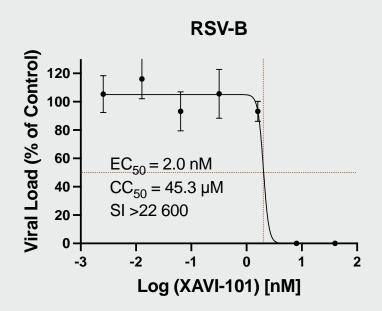


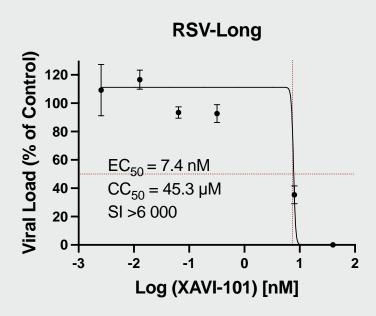
Virus mutations do not impair activity of XAVI-101 as a potent DHODH inhibitor

Left: Marschall Lab, Erlangen, Germany/Right: Grunwald Lab, Leipzig, Germany; SI: Selectivity Index

Mice Were Infected With SARS-CoV-2 Wuhan Strain

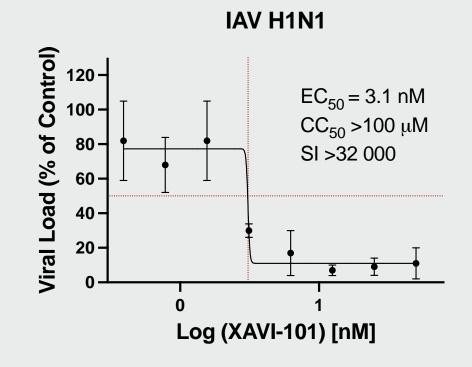



XAVI-101 analog reduces SARS-CoV-2 viral load in lungs of K18 hACE2 mice



XAVI-101 Inhibits Diverse Respiratory Syncytial Virus (RSV) Strains *In Vitro*

HepG2 cells were infected with three different RSV strains


XAVI-101 is highly active against different strains of RSV

Marschall Lab, Erlangen, Germany; SI: Selectivity Index

XAVI-101 Inhibits Influenza Virus Replication In Vitro

- HEK293T cells were transfected with a GFP-based reporter systems, sensitive for IAV polymerase
- Cells were treated with XAVI-101 and infected with IAV H1N1/PR8 isolate

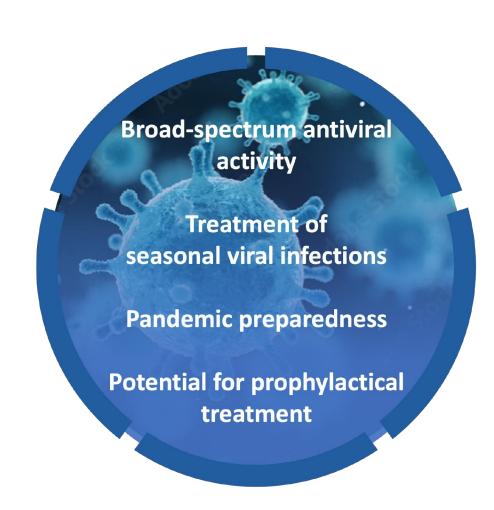
XAVI-101 is highly active against influenza H1N1 virus replication

Marschall Lab, Erlangen, Germany; SI: Selectivity Index

DHODH Inhibitors for the Treatment of Different Respiratory Infections

High Medical Need

- For potential future pandemics
- In general, for vulnerable patients
 - Immunocompromised patients under certain therapies
 - Elderly patients
 - Patients with Asthma and Chronic Obstructive Pulmonary Disease (COPD)
 - Newborns


Antiviral Treatment Option

- Acute therapy for different respiratory viruses due to host-based approach
- Prevention therapy
 - Based on the clean safety profile of vidofludimus calcium it can be used as
 - Prevention therapy in seasons with higher respiratory tract infection risk
 - Prevention therapy for health care personnel

XAVI-101: In Development as Potential Broad-Spectrum Antiviral Drug

- **XAVI-101** shows improved target engagement and pharmaceutical properties compared to vidofludimus calcium (currently tested in phase 2 and 3 clinical trials in multiple sclerosis)
- XAVI-101 potently restricts replication of different respiratory viruses in single-digit nanomolar range in vitro
- **XAVI-101** analog reduces the viral load in lungs of SARS-CoV-2 infected mice
- XAVI-101 represents a promising candidate with broad-spectrum antiviral activity for future clinical development

Thank You!

Collaboration Partners

Universitätsklinikum Erlangen

Thank You!

Hella Kohlhof, Ph.D.

Chief Scientific Officer

Phone: +49-89-2080477-03

Email: hella.kohlhof@imux.com

Web: www.imux.com

