IMU-838: A Safe and Potent Inhibitor Of DHODH for the Treatment of Autoimmune Disease: Mechanism of Action and Clinical Outcomes

NASDAQ: IMUX | October 06, 2021
B &T Cell-Mediated Autoimmune Disease Drug Development Summit
Cautionary Note Regarding Forward-Looking Statements

This presentation contains “forward-looking statements” that involve substantial risks and uncertainties for purposes of the safe harbor within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These include statements regarding management’s intentions, plans, beliefs, expectations or forecasts for the future, and, therefore, you are cautioned not to place undue reliance on them. No forward-looking statement can be guaranteed, and actual results may differ materially from those projected. Immunic undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise, except to the extent required by law. We use words such as “anticipates,” “believes,” “plans,” “expects,” “projects,” “future,” “intends,” “may,” “will,” “should,” “could,” “estimates,” “predicts,” “potential,” “continue,” “guidance,” and similar expressions to identify these forward-looking statements that are intended to be covered by the safe-harbor provisions of the Private Securities Litigation Reform Act of 1995.

Such forward-looking statements are based on our expectations and involve risks and uncertainties; consequently, actual results may differ materially from those expressed or implied in the statements due to a number of factors, including, but not limited to, risks relating to strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management. Risks and uncertainties that may cause actual results to differ materially from those expressed or implied in any forward-looking statement include, but are not limited to: Immunic’s plans to develop and commercialize its product candidates, including IMU-838, IMU-935 and IMU-856; the timing of initiation of Immunic’s planned clinical trials; the potential for IMU-838 to safely and effectively target and treat relapsing-remitting multiple sclerosis or infections associated with coronavirus disease 2019 (COVID-19); the impact of future preclinical and clinical data on IMU-838 and the Company’s other product candidates; the availability or efficacy of Immunic’s potential treatment options that may be supported by trial data discussed herein; expectations regarding potential market size; the timing of the availability of data from Immunic’s clinical trials; the timing of any planned investigational new drug application or new drug application; Immunic’s plans to research, develop and commercialize its current and future product candidates; Immunic’s ability to successfully collaborate with existing collaborators or enter into new collaboration agreements, and to fulfill its obligations under any such collaboration agreements; the clinical utility, potential benefits and market acceptance of Immunic’s product candidates; Immunic’s commercialization, marketing and manufacturing capabilities and strategy; Immunic’s ability to identify additional products or product candidates with significant commercial potential; developments and projections relating to Immunic’s competitors and industry; the impact of government laws and regulations; Immunic’s ability to protect its intellectual property position; Immunic’s listing on The Nasdaq Global Select Market; expectations regarding the capitalization, resources and ownership structure of the company; the executive and board structure of the company; Immunic’s estimates regarding future revenue, expenses, capital requirements and need for additional financing; the nature, strategy and focus of the company; and the other risks set forth in the company’s Annual Report on Form 10-K for the fiscal year ended December 31, 2020, filed with the Securities and Exchange Commission.

Forward-looking statements included in this presentation are based on information available to Immunic as of the date of this presentation. Immunic does not undertake any obligation to update such forward-looking statements except as required by applicable law.
1

Immunic Therapeutics

Company Introduction
Our Mission

We are developing a pipeline of next-generation selective oral therapies focused on offering patients with chronic inflammatory and autoimmune diseases new and clinically meaningful treatment options.
Development Pipeline

<table>
<thead>
<tr>
<th>Program</th>
<th>Target</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Key 2021/22 Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMU-838</td>
<td>DHODH</td>
<td>Relapsing-Remitting Multiple Sclerosis (RRMS)</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 3 RRMS: first-patient-in expected in Q4/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Progressive Multiple Sclerosis (PMS)</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 2 UC: last-patient-in expected in Q4/2021; top-line data expected in Q2/2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ulcerative Colitis (UC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crohn’s Disease (CD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary Sclerosing Cholangitis (PSC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMU-935</td>
<td>RORyt</td>
<td>Psoriasis</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 1 healthy volunteers: unblinded SAD/MAD safety data expected in Q4/2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Castration-Resistant Prostate Cancer (CRPC)</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 1b psoriasis: initial psoriasis data expected in Q2/2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guillain-Barré Syndrome (GBS)</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 1 CRPC: expected to start in Q4/2021</td>
</tr>
<tr>
<td>IMU-856</td>
<td>Intestinal Barrier Function</td>
<td>Gastrointestinal Diseases</td>
<td></td>
<td></td>
<td></td>
<td>• Phase 1 healthy volunteers: unblinded SAD/MAD safety data expected in Q1/2022</td>
</tr>
</tbody>
</table>

- Completed or ongoing
- In preparation or planned
IMU-838 Overview

Mode of Action

Clinical Data
Blocking DHODH Leads to a Selective Effect on Overactivated Lymphocytes Without Broader Immunosuppression

Selective targeting of hyperactivate immune cells without affecting normal immune function

No negative effect observed on:
- White blood cell count
- Rates of infection or malignancy
- Vaccination efficacy\(^1\)

Lymphocyte
- Metabolically silent
- DHODH not important

Activated Lymphocyte
- Activation of pyrimidine de novo synthesis
- DHODH upregulation
- Rate limiting step in pyrimidine synthesis

“Stressed” Lymphocyte
- IMU-838 triggering:
 - Pyrimidine pool depletion
 - Metabolic stress signal up

Pharmacological Effects
- Blocking of Th17/Th1 cytokines

DHODH: dihydroorotate dehydrogenase
Highly Potent Cytokine Inhibition

- Human PBMCs were stimulated with PHA for 48h and treated with different concentrations of vidofludimus* (Vido) or teriflunomide (TNFM)
- Cytokine secretion of IL-17 and IFNγ was measured by ELISA

Muehler et al., 2020
* vidofludimus is the active moiety of IMU-838

IMU-838 Exhibits A High Potency On Cytokine Reduction
Hyperactive/high-affinity immune cells are specifically dependent on DHODH

High metabolic turnover in high-affinity T cells

High amounts of nucleotides for mRNA synthesis (up to 100-fold higher nucleotide demand for RNA synthesis than for DNA synthesis)

High producers of IL-17 and IFNγ
IMU-838 Is Highly Active on Murine High Affinity T Cells

IMU-838 selectively blocks proliferation of T cells in antigen dependent manner

CD8+ T cells from OT-I (high affinity TCR) and OT-III (low affinity TCR) mice were stimulated with OVA peptide loaded splenocytes (antigen specific) in the presence or absence of 10 µM IMU-838 and Teriflunomide (TF) for 3 days.

Read out: proliferation

→ Strong inhibition of high affinity T cells but not low affinity T cells

Murine DHODH Inhibition IC_{50}: 5 µM IMU-838, 0.2 µM Teriflunomide

Ref: Collaboration Luisa Klotz, Muenster, Germany
IMU-838 Promotes a Less Inflammatory Environment

Stopping a pro-inflammatory environment

→ Repression of pro-inflammatory cytokines

IL-17A/F, IFNγ, IP-10

GM-CSF, IL-6, IL-1β

→ Anti-inflammatory cytokine induction

IL-4, IL-10

Induction of apoptosis in stimulated PBMCs

10 µM IMU-838 (Vido) induces similar % of apoptosis compared to 100 µM teriflunomide (TNFM)

Induction of regulatory macrophages in MLR

Moderate induction of regulatory macrophages and strong additive effect in combo with Infliximab

1 Peripheral Blood Mononuclear Cells, 2 Mixed Lymphocyte Reaction, 3 6-thioguanin
Kohlhof et al., Poster UEGW 2019; Muehler et al., 2020
No General Antiproliferative Effects by IMU-838

IMU-838 did not induce monocyto-, neutro- and leukopenia in a mouse model of SLE

- Indicating a significantly lower bone marrow toxicity compared to Cyclophosphamide

IMU-838 has a natural selectivity towards hyperactivate immune cells and exhibits no general immune suppressive features

SLE: Systemic Lupus Erythematosis

Graph is adapted from Kulkarni et al., Am J Pathol. 2010 Jun;176(6):2840-7. Epub 2010 Apr 22
Muehler et al., ECTRIMS 2019, Abstract A-1026-0031-00242
IMU-838 Demonstrated Activity in a Therapeutic RRMS Animal Model

IMU-838 demonstrates dose-dependent activity in rat EAE model

- Improvement of body weight for all doses tested
- Improvement of disease severity for 20 and 60 mg/kg

Muehler et al., 2020
RRMS: Relapsing-Remitting Multiple Sclerosis
IMU-838 (Vidofludimus Calcium): Key Characteristics

Oral small molecule

- Active moiety vidofludimus MW 355 g/mol
- IMU-838 is calcium salt of vidofludimus

Chemical name (IUPAC):
2-(3-Fluro-3’-methoxybiphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid

Small white tablet

- Oral
- Once or twice daily
- Human serum t_{1/2} ~ 30 hours
- Human t-max ~ 2-3 hours
14 Day Multiple Dosing of 35 mg Vidofludimus in Humans – Corresponds to 30 mg IMU-838

Estimated Average Exposure at steady state

- IC\textsubscript{90} IL-17F and IFN\textsubscript{\gamma} in PBMCs
- IC\textsubscript{50} apoptosis of act. T-cells
- IC\textsubscript{50} IFN\textsubscript{\gamma} (~ 1.3 µg/ml) in PBMCs
- IC\textsubscript{50} hDHODH (= 0.088 µg/ml)

At 35 mg vidofludimus (~30 mg IMU-838), exposure in patients is continuously above the 90 % inhibition level (IC\textsubscript{90}) of IL-17F and IFN\textsubscript{\gamma}.
2

IMU-838 | Clinical Data

- Inflammatory Bowel Disease (IBD)
- Multiple Sclerosis (MS)
ENTRANCE Study: Primary Efficacy Results

Study performed with active moiety vidofludimus

All patients failed two attempts to taper down steroids

Open-label, dosing of 35 mg vidofludimus QD

Primary efficacy endpoint: steroid-free/steroid-reduced remission (week 12)

Number of Patients

Week 1: 26.5 (± 8.0) mg*

Week 12: 1.0 (± 2.8) mg*

IMU-838 had response rates of:

85.7% in Crohn’s disease

91.7% in ulcerative colitis

Herrlinger et al., 2011, Gastroenterology 140:588

*Mean dose of steroid equivalent in mg per day; mITT: modified intent to treat; QD: quaque die = once-daily
CALDOSE-1: Clinical Phase 2 in UC Ongoing
NCT03341962

Coordinating Investigator:
Dr. Geert d’Haens
(AMC Amsterdam)

Active IND in the United States

Primary Endpoint:
Proportion of patients with symptomatic remission and endoscopic healing at week 10

Overall Number of Patients: 240

Currently More Than 100 Active Sites in 14 Countries: USA, Western, Central and Eastern Europe

Timelines:
Recruitment expected to be completed in Q4/2021
Currently estimated to deliver top-line data in Q2/2022
CALDOSE-1: Phase 2 Trial Design in UC
NCT03341962

Induction Phase
- Placebo (n=60)
- 10 mg IMU-838 QD (n=60)
- 30 mg IMU-838 QD (n=60)
- 45 mg IMU-838 QD (n=60)

10 weeks

Maintenance Phase
- Patients with symptomatic remission at weeks 10 or 22
 - Placebo (n=60)
 - 10 mg IMU-838 QD
 - 30 mg IMU-838 QD

Final analysis induction phase after 10 weeks

Final analysis maintenance phase after 50 weeks

Optional open-label extension period to obtain long-term safety: up to 9 years

R: randomization; QD: quaque die = once-daily

Patient number required: N=240

Until UC relapse or termination
The interim analysis supported that IMU-838 is a safe oral medication in patients with UC with a broad therapeutic index.

• Performed by an unblinded data review committee (DRC) in August 2019
• Analysis based on all available clinical, endoscopic, biomarker, pharmacodynamic, and safety data

1 Main Treatment Period
• Doses of 10 to 45 mg may be effective in UC

2 Interim Analysis Confirmed the Good Safety Profile
• No intolerable dose identified
• No safety signal observed
IMU-838 | Clinical Data

- Inflammatory Bowel Disease (IBD)
- Multiple Sclerosis (MS)
Phase 2 Data of IMU-838 in RRMS: Primary and Key Secondary Endpoints Met, Showing Strong Activity

Coordinating Investigator
Robert Fox, MD (Cleveland Clinic)

Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Phase 2 Trial
- Blinded main treatment period of 24 weeks
- Extended treatment period of up to 9.5 years to observe long-term safety
- 210 patients randomized in 36 centers across four European countries

Key Study Endpoints
Cumulative number of new combined unique active (CUA) magnetic resonance imaging (MRI) lesions up to week 24
- Primary endpoint: Difference between 45 mg IMU-838 & placebo
- Key secondary endpoint: Difference between 30 mg IMU-838 & placebo

Suppression of CUA MRI Lesions IMU-838 Versus Placebo Over 24 Weeks

CUA MRI Lesions: combined unique active magnetic resonance imaging lesions. Sum of the number of all new Gadolinium-enhancing lesions on T1-weighted MRI and the number of all new or substantially enlarged lesions on T2-weighted MRI (non-enhancing on T1-weighted MRI), avoiding double counting. Estimates are adjusted for baseline volume of T2 lesions, MRI field strength (1.5 or 3.0 Tesla), and baseline number of Gadolinium-enhancing lesions (0, >=1) using a generalized linear model with a negative binomial distribution and a logarithmic link function. Log transformation of time from first IMP dose to date of last MRI assessment is used as offset term.
Study Met Key Secondary Endpoints: Suppression of MRI Lesions and Robust Decrease in Serum Neurofilament Light Chain

- Effect of IMU-838 on MRI lesion suppression can be observed already at early time points
- Robust decrease in serum neurofilament light chain

Cumulative Number of Gd+ Lesions*

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>W6</th>
<th>W12</th>
<th>W18</th>
<th>W24</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mg IMU-838</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>45 mg IMU-838</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Placebo</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

Median Percentage Change from Baseline to Week 24 in Serum Neurofilament (Including 95% Confidence Intervals) (Biomarker for Axonal Damage)**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mg IMU-838</td>
<td>-17.0%</td>
<td></td>
</tr>
<tr>
<td>45 mg IMU-838</td>
<td>-20.5%</td>
<td>+6.5%</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Displayed are adjusted mean values (and 95% confidence intervals). Estimates are adjusted for MRI field strength (1.5 or 3.0 Tesla) and baseline number of Gd+ lesions (0, >=1)

**Quantification of neurofilament light polypeptide (NEFL) by an electrochemiluminescent immunoassay (ECLIA) in blood serum samples

Gd: Gadolinium
Phase 2 Data of IMU-838 in RRMS: Positive Signals on Relapse and Unconfirmed Disability

Left: Proportion of Patients With Relapse up to Week 24. Right: EDSS (Expanded Disability Status Scale) progression is defined as an increase of the EDSS score compared to baseline of at least 1.0 point for patients with a baseline EDSS score of 1 to 4.0 or of at least 1.5 points for patients with a baseline EDSS score of 0. There is no confirmation of EDSS progression in this trial due to its short duration. Patients with missing assessments at week 24 without a progression at any time are set to missing.
3

IMU-838

Broad-Spectrum Antiviral Activity

Mode of Action and Antiviral Effect
Summary of Rationale for IMU-838 as an Antiviral Agent

- **Dual mode of action:** orally available DHODH inhibitor with both, antiviral and anti-inflammatory effects
- **Host-based mechanism:** avoids dependence on specific viral proteins and, therefore, offers broad-spectrum antiviral activity

Uninfected Normal Cell
- Metabolically silent
- DHODH not important

Virus Infected Cell
- Virus infection
- Viral replication starts
- Pyrimidine de novo synthesis activated
- DHODH inhibition

Block of Pyrimidine de novo Synthesis
- IMU-838
- DHODH block
- Pyrimidine pool
- Metabolic stress

Antiviral Effects
- Lack of nucleotides blocks:
 - viral mRNA synthesis
 - viral genomes
- Innate Immunity independent of Interferon

Inhibition of virus replication
- Plus attack by innate immunity
IMU-838 has shown broad-spectrum antiviral activity against different pathogenic viruses with EC$_{50}$ values well reachable with 22.5 mg BID dosing.

Antiviral vs. Immunomodulatory Treatments

Viral Replication

Direct Antiviral Therapies
Example: Remdesivir

Immune Overstimulation

Immunomodulators
Example: Tocilizumab

DHODH Inhibitors

Known Broad Antiviral Effects

Selective Immunomodulation

“Nucleotide starving”

Virus-infected host cells

Highly stimulated immune cells
Conclusions
Conclusions

- IMU-838 is a safe and orally available small molecule inhibitor of DHODH for the treatment of various autoimmune diseases.

- DHODH inhibition targets highly metabolically activate cells.

- Targeting DHODH has an additional broad-spectrum antiviral activity.