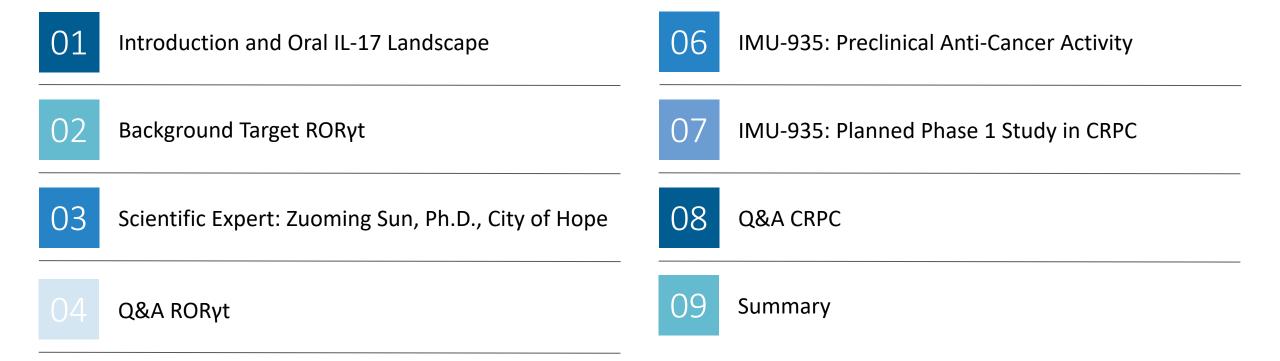


Cautionary Note Regarding Forward-Looking Statements

This presentation contains "forward-looking statements" that involve substantial risks and uncertainties for purposes of the safe harbor within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These include statements regarding management's intentions, plans, beliefs, expectations or forecasts for the future, and, therefore, you are cautioned not to place undue reliance on them. No forward-looking statement can be guaranteed, and actual results may differ materially from those projected. Immunic undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise, except to the extent required by law. We use words such as "anticipates," "plans," "expects," "projects," "future," "intends," "may," "will," "should," "could," "estimates," "predicts," "potential," "continue," "guidance," and similar expressions to identify these forward-looking statements that are intended to be covered by the safe-harbor provisions of the Private Securities Litigation Reform Act of 1995.


Such forward-looking statements are based on our expectations and involve risks and uncertainties; consequently, actual results may differ materially from those expressed or implied in the statements due to a number of factors, including, but not limited to, risks relating to strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management. Risks and uncertainties that may cause actual results to differ materially from those expressed or implied in any forward-looking statement include, but are not limited to: Immunic's plans to develop and commercialize its product candidates, including IMU-838, IMU-935 and IMU-836; the timing of initiation of Immunic's planned clinical trials; the potential for IMU-838 and the Company's other product candidates to safely and effectively target and treat the diseases mentioned herein; the impact of future preclinical and clinical data on IMU-838 and the Company's other product candidates; the availability or efficacy of Immunic's potential treatment options that may be supported by trial data discussed herein; expectations regarding potential market size; the timing of the availability of data from Immunic's clinical trials; the timing of any planned investigational new drug application or new drug application; Immunic's plans to research, develop and commercialize its current and future product candidates; Immunic's ability to successfully collaborate with existing collaborators or enter into new collaboration agreements, and to fulfill its obligations under any such collaboration agreements; the clinical utility, potential benefits and market acceptance of Immunic's product candidates; Immunic's commercialization, marketing and manufacturing capabilities and strategy; Immunic's ability to identify additional products or product candidates with significant commercial potential; developments and projections relating to Immunic's competitors and industry; the impact of government laws and regulations; Immu

Forward-looking statements included in this presentation are based on information available to Immunic as of the date of this presentation. Immunic does not undertake any obligation to update such forward-looking statements except as required by applicable law.

IMU-935: Preclinical and Clinical Development Update

IMU-935: Clinical Development Status

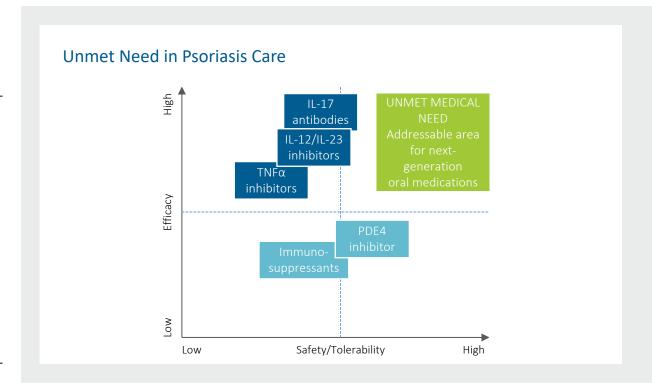
Development Pipeline

Program	Indication	Target	Preclinical	Phase 1	Phase 2	Phase 3
IMU-838	Relapsing-Remitting Multiple Sclerosis	DHODH				
	Progressive Multiple Sclerosis	DHODH				
	Ulcerative Colitis	DHODH				
	Crohn's Disease	DHODH				
	Primary Sclerosing Cholangitis	DHODH				
IMU-935	Psoriasis	ROR y t				
	Castration-Resistant Prostate Cancer	ROR y t				
	Guillain-Barré Syndrome	ROR y t				
IMU-856	Gastrointestinal Diseases	Intestinal Barrier Function				
■ Completed	■ Completed or ongoing ■ In preparation or planned					

IMU-935

Introduction and Oral IL-17 Landscape

Autoimmune Diseases and IMU-935


IL-17 in Autoimmune Diseases

- Autoimmune diseases affect millions of patients worldwide^[1]
- Th17/IL-17/RORγt axis plays an important role in auto immunity-related diseases^[2]
- Antibodies targeting this axis corroborate IL-17's role in autoimmune diseases, but are more complex, costly and less patient friendly than oral drugs^[2]

Goal

- Develop an orally available and potent IL-17 inhibitor for the safe and efficacious treatment of autoimmune diseases
- Small molecule inhibitor of the pathologic functions of RORγt in autoimmune diseases without affecting physiological functions of RORγt

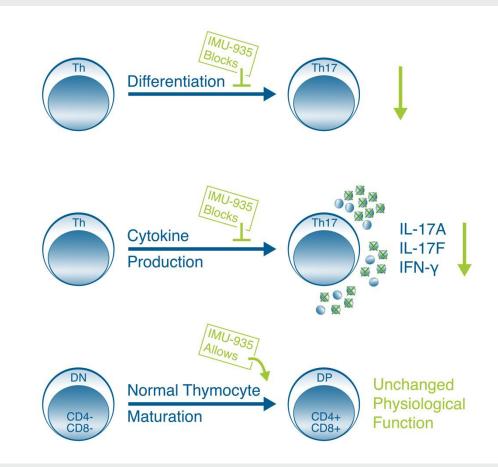
Strong Medical Need for Oral IL-17 Pathway Inhibitors such as IMU-935

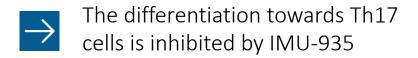
[1] Rose, Noel R. American journal of epidemiology 2016; 183.5: 403-406 [2] Fasching, Patrizia, et al. Molecules 2017 22.1: 134
Th: T helper; IL: interleukin; TNF: tumor necrosis factor; PDE4: phosphodiesterase type 4; RORy: retinoic acid receptor-related orphan nuclear receptor gamma

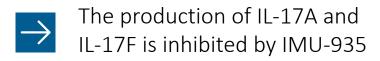
Current Landscape of Oral IL-17 Inhibitors^[1]

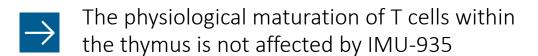
Product	Developer	Mode of Action	Administration	Indications	Development Stage
BI730357	Boehringer Ingelheim	RORγt inverse agonist	Oral	Plaque psoriasis and psoriatic arthritis	Phase 2
Cedirogant	AbbVie	RORγt inverse agonist	Oral	Plaque psoriasis	Phase 2
AUR-101	Aurigene	RORγt inverse agonist	Oral	Psoriasis	Phase 2
IMU-935	Immunic	RORγt inverse agonist	Oral	Psoriasis, Castration-Resistant Prostate Cancer, Guillain-Barré Syndrome	Phase 1b
SAR-441169	Sanofi Genzyme	RORγt inverse agonist	Oral	Not disclosed	Phase 1
JTE-761	Japan Tobacco	RORγt inverse agonist	Oral	Not disclosed	Phase 1

[1] Gege, C. (2021). Expert Opinion on Drug Discovery





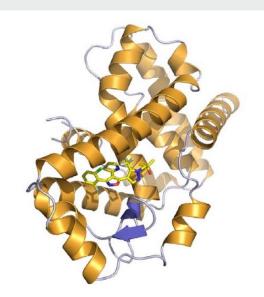

IMU-935


Background Target RORγt

Main Functions of RORyt

Th: T helper; IL: interleukin; IFN: interferon; DN: double-negative; DP: double-positive; CD: cluster of differentiation

IMU-935 Has Been Observed to be Potent in Human Cells


Effect of IMU-935 in Stimulated Human PBMC at Nanomolar Concentrations

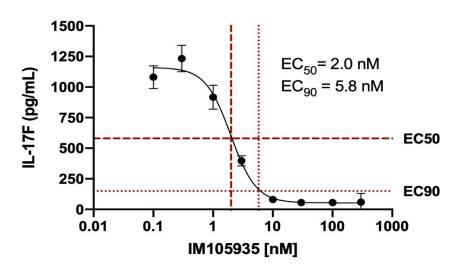
Inhibition of RORγ (20 nM) and DHODH (240 nM) leads to synergistic inhibition of cytokines associated with autoimmune diseases with IC_{50} of 3-5 nM in stimulated human lymphocytes

	IC ₅₀ (μM)
IL-17A	0.005
IL-17F	0.004
ΙΕΝγ	0.003
IL-1a and b	no inhibition
IL-4,5,6,8	no inhibition
RORγ (MST)	0.024
RORγ (cellular, reporter assay)	0.020
DHODH	0.240
Th17 differentiation (murine) ^[1]	0.135

Read-out: effect on cytokine production after 48 hours in PBMC

Co-crystal structure (Resolution 2.6 A) of a closely related derivative compound binds to hydroxycholesterol binding site of RORy

PBMC: Peripheral Blood Mononuclear Cells; Th: T helper; IL: interleukin; IFN: interferon; MST: microscale thermophoresis [1] Zuoming Sun, City of Hope, 2019

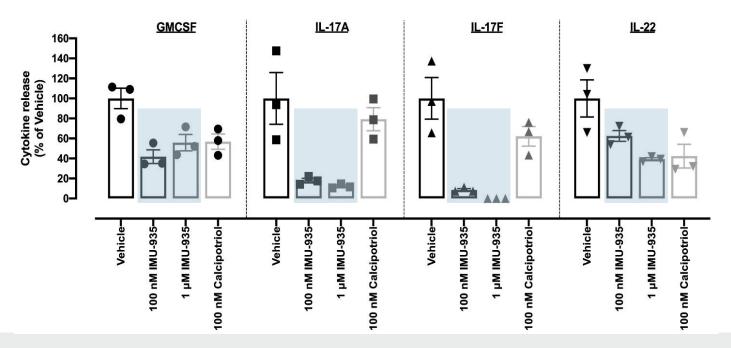

Inhibition of Th17 Differentiation and IL-17 Production

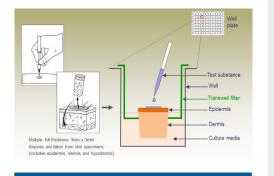
Th17 Differentiation – Murine Primary Thymocytes

Normalized Th17 differentiation (%) 60-50-IC50 (134.7 nM) 40-30-100 200 300 500 0 [IMU-935] (nM)

The IC_{50} for Th17 differentiation of murine cells was 135 nM

IL-17F Expression – Human Primary PBMCs


The EC₅₀ for IL-17F production from stimulated human PBMCs is 2-4 nM


Zuoming Sun, City of Hope, 2020 PBMC: Peripheral Blood Mononuclear Cells; Th: T helper; IL: interleukin

IMU-935 Potently Inhibited Cytokine Release in Ex Vivo Stimulated Human Skin Punches

Cytokine Inhibition in Inflamed Human Skin Model

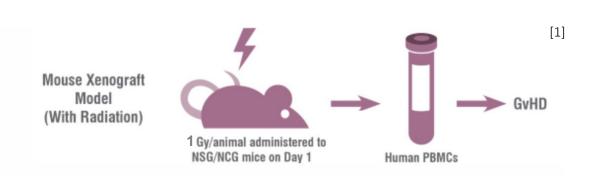
IMU-935 is active with < 100 nM on **GM-CSF** IL-17A IL-17F

Method:

Skin punches from human healthy volunteers were ex vivo pretreated with IMU-935 for 24 hours and then challenged with a pro-inflammatory cytokine cocktail for another 24 hours.

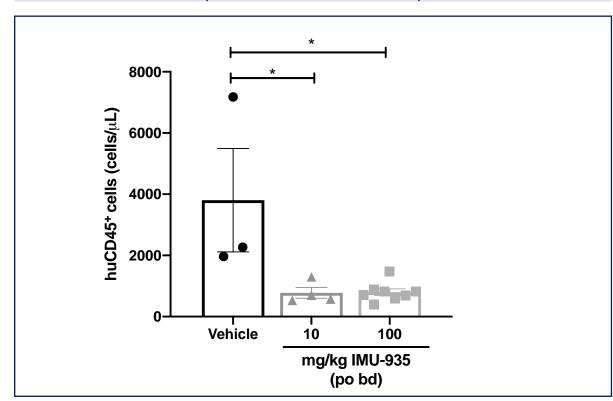
Result:

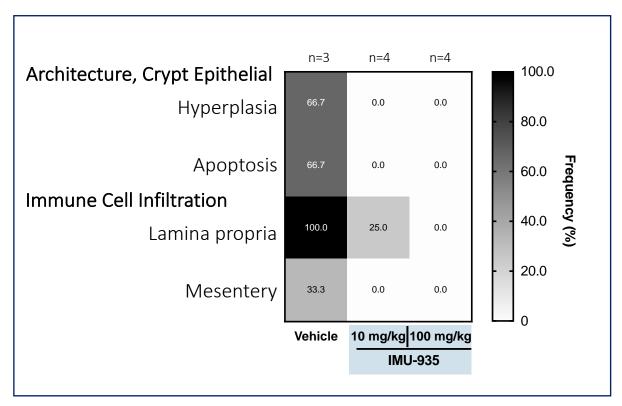
IMU-935 demonstrated a strong inhibition of GM-CSF, IL-17A, IL-17F and IL-22.


Human Graft-Versus-Host Disease and GvHD Mouse Model

Human Graft-Versus-Host Disease

- Graft-versus-host disease (GvHD) is an immune condition that occurs after transplant procedures when immune cells from the donor (graft cells) attack the recipient patient host's tissues
- The disease is a side effect that is common after an allogeneic bone marrow transplant (stem cell transplant)


[1] Charles River Website, available at: https://www.criver.com/products-services/discovery-services/pharmacology-studies/oncology-immuno-oncology-studies/oncology-models/graft-vs-host-disease-models?region=3696



Activity of IMU-935 on GvHD is Due to a Reduction of Circulating Human T Lymphocytes

IMU-935 reduced circulating human CD45 cells (CD4⁺ and CD8⁺ T cells)

IMU-935 reduced microscopic pathology findings in the colon, typical for GvHD

IMU-935 reduced circulating human T cells and reduced severity of the disease

GvHD: Graft-versus-Host-Disease; CD: cluster of differentiation

Challenge: RORyt Inhibition and Risk For T Cell Lymphomas

- In several publications, knock-out of RORγt was shown to correlate with a potential risk of T cell lymphomas
- Guntermann et al.^[1] have shown that some small molecule inhibitors developed by Novartis and GSK show thymic aberrations
- Due to safety findings seen in animal studies by several pharma companies, some of the development projects were stopped or switched to alternative chemotypes

[CANCER RESEARCH 62, 901-909, February 1, 2002]

High Incidence of T-Cell Lymphomas in Mice Deficient in the Retinoid-related Orphan Receptor $ROR\gamma^1$

Eiichiro Ueda, Shogo Kurebayashi, Morito Sakaue, Michael Backlund, Beverly Koller, and Anton M. Jetten¹

Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709 [E. U., S. K., M. S., A. M. J.], and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 [M. B., B. K.]

Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations

Christine Guntermann,¹ Alessandro Piaia,² Marie-Laure Hamel,³ Diethilde Theil,²
Tina Rubic-Schneider,² Alberto del Rio-Espinola,² Linda Dong,⁴ Andreas Billich,¹
Klemens Kaupmann,¹ Janet Dawson,¹ Klemens Hoegenauer,⁵ David Orain,⁵ Samuel Hintermann,⁵
Rowan Stringer,⁶ Dhavalkumar D. Patel,¹ Arno Doelemeyer,² Mark Deurinck,² and Jens Schümann²

¹Autoimmunity, Transplantation, and Inflammation Disease Area, ²Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland. ³CiToxLAB, Evreux, France. ⁴Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA. ⁵Global Discovery Chemistry, ⁶Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, Basel, Switzerland.

[1] Guntermann et al. JCI Insight. 2017;2(5):e91127

In Contrast to Full Knock-Out, RORyt Functions Can be Uncoupled^[1]

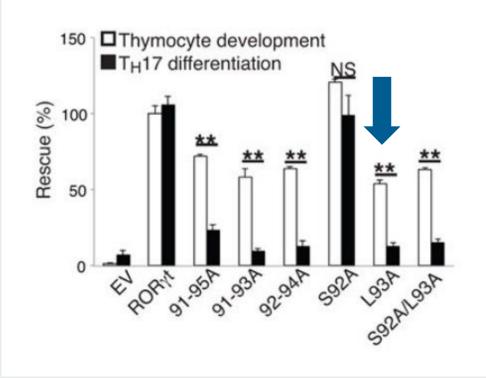
Mutation Studies Show Variable Contribution of Protein Sequences to Different Phenotypes

Exchange of leucine 93 to alanine leads to loss of Th17 differentiation capacity but maintains thymocyte maturation physiological function

Nat Immunol. 2017 October; 18(10): 1128-1138. doi:10.1038/ni.3832.

Two amino acid mutation disrupts ROR γ t function in Th17 differentiation but not thymocyte development

Zhiheng He^{1,#}, Jian Ma^{1,#}, Ruiqing Wang^{1,2}, Jing Zhang^{1,2}, Zhaofeng Huang³, Fei Wang¹, Subha Sen¹, Ellen V. Rothenberg⁴, and Zuoming Sun^{1,*}


¹Division of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, United States

²Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States

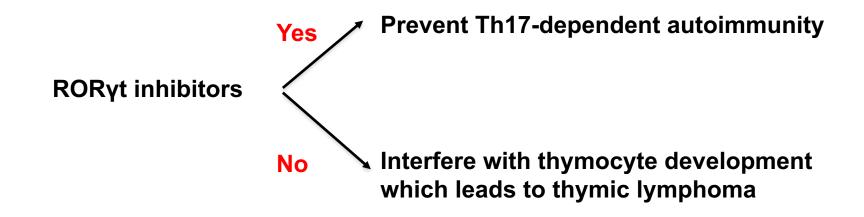
³Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China

⁴Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA

L93A Mutation in RORC Leads to Selective TH17 Inhibition ALA scan of Hinge region and DBD c-terminal region resulted in L93A exchange relevant for selectivity

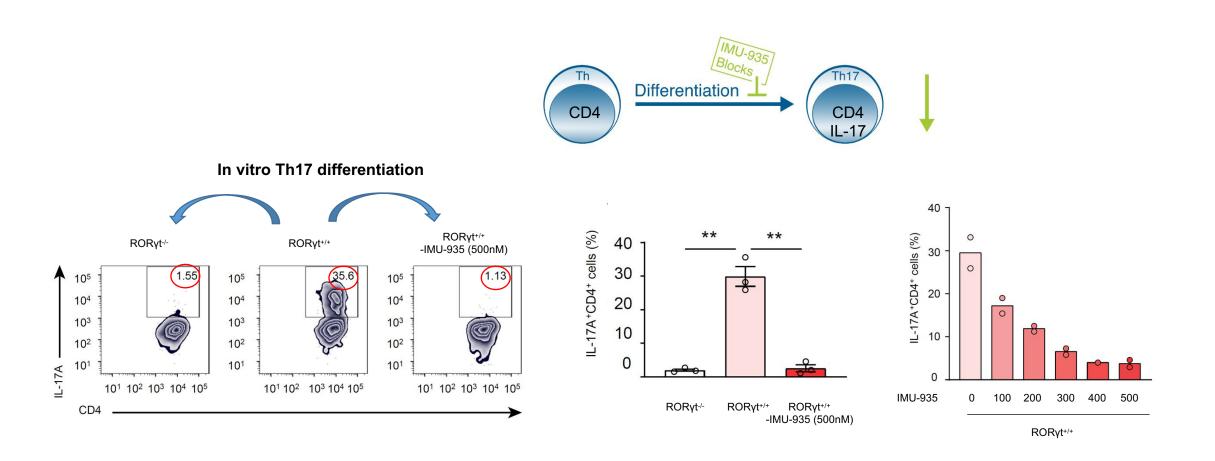
[1] He et al. Nat. Immunol. 2017, 18, 1128-1138

Inhibition of RORyt-Dependent Th17 But Not Thymocyte Function by IMU-935

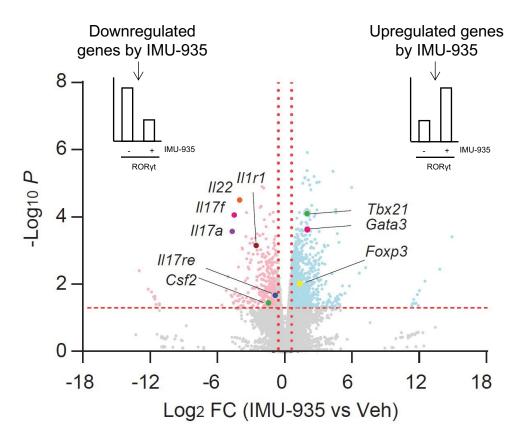

Zuoming Sun, Ph.D.

Professor, Department of Molecular Imaging & Therapy

City of Hope, Duarte, CA, USA

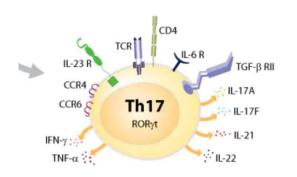

Potential Issue With RORγt Inhibitors: Lymphoma

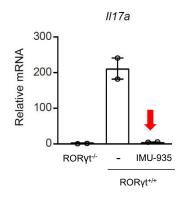
Is it possible to have a RORγt inhibitor specifically targeting Th17 but not thymocytes?

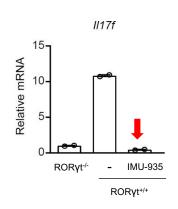

IMU-935 Inhibits Th17 Differentiation in a Dose Dependent Manner

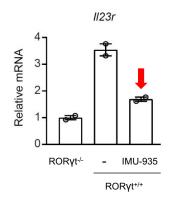
Th17 cells are positive for the surface marker CD4 and express/produce IL-17A, IL-17F and other cytokines

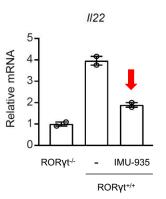
IMU-935 Modulates RORγ-Related Gene Expression Under Th17 Differentiation Conditions

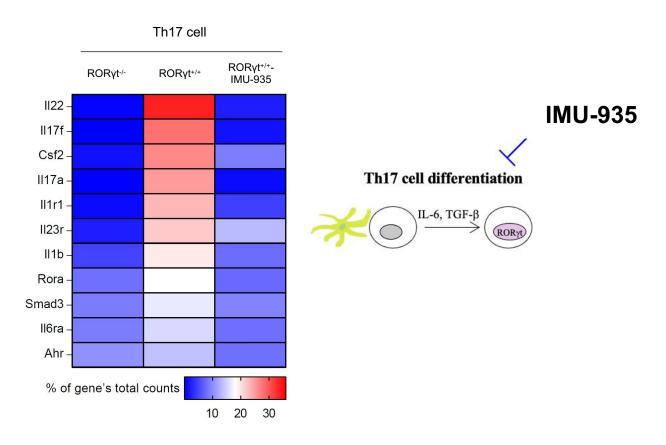



Volcano plot showing DEGs by IMU-935

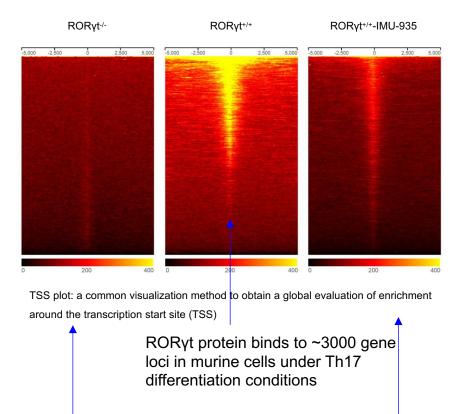



Repression of Typical Th17 Genes by IMU-935

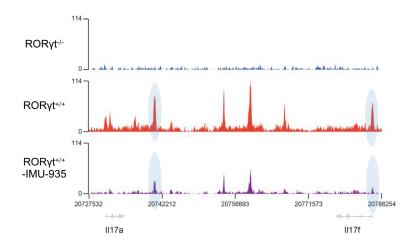

Murine primary thymocytes, Th17 differentiation condition, 500 nM IMU-935 (CPD#1)

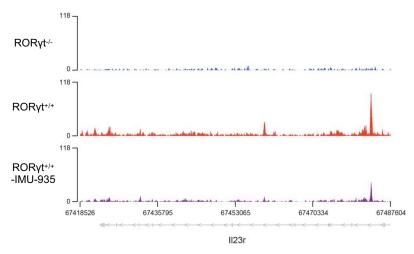


IMU-935 Blocks Th17 Differentiation and Modifies Gene Expression Profiles

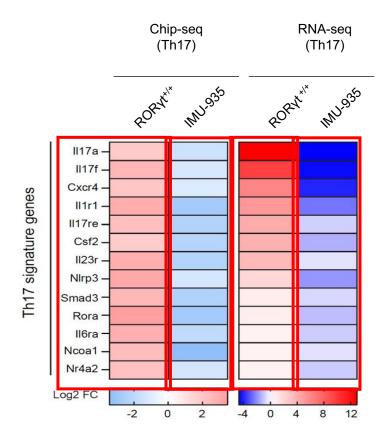


Similar gene expression pattern for Th17 signature genes in RORγt knockout and wild type cells treated with IMU-935

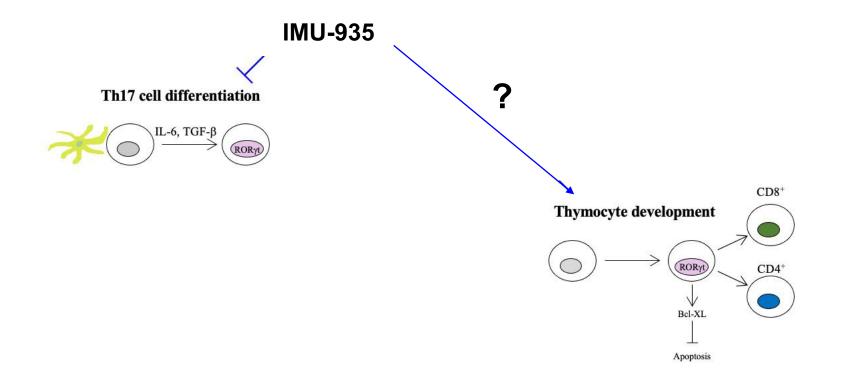

IMU-935 Attenuates RORγt Genome-Wide DNA-Binding in Th17 Cells


TSS plot

Negative control: In RORyt knockout cells no binding to DNA loci can be detected in murine cells under Th17 differentiation conditions

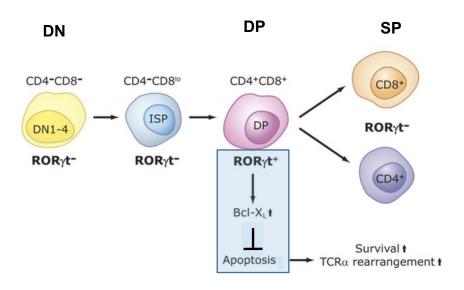

RORyt protein binds to a lower number and to a lesser extent to DNA loci in murine cells under Th17 differentiation conditions

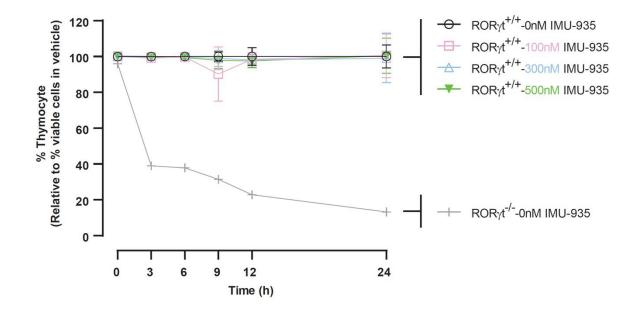
IMU-935 Attenuates RORγt DNA-Binding and Inhibits Expression of Genes Critical for Th17 Cells



IMU-935 leads to reduced binding of RORγt to DNA loci relevant for Th17 differentiation

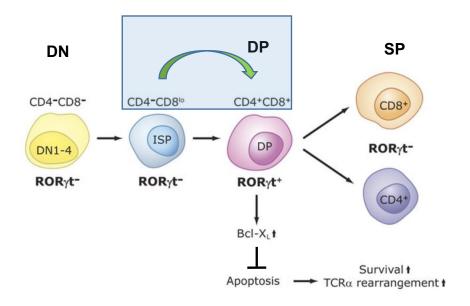
This decreased binding leads to strongly reduced mRNA expression of the according genes

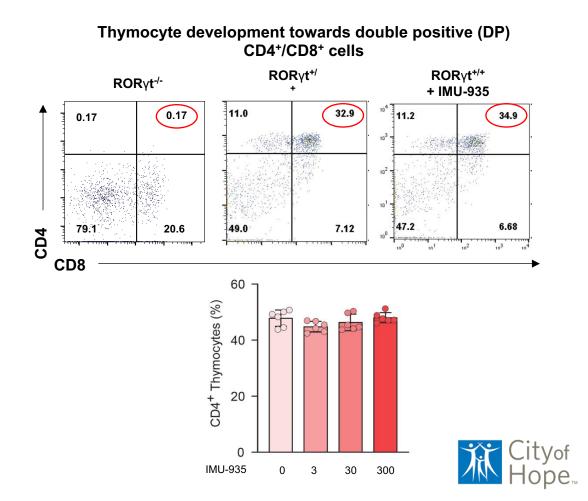

IMU-935 Blocks Th17 Differentiation – What Happens With Thymocytes?



IMU-935 Does Not Impact Survival Signals During Thymocyte Maturation

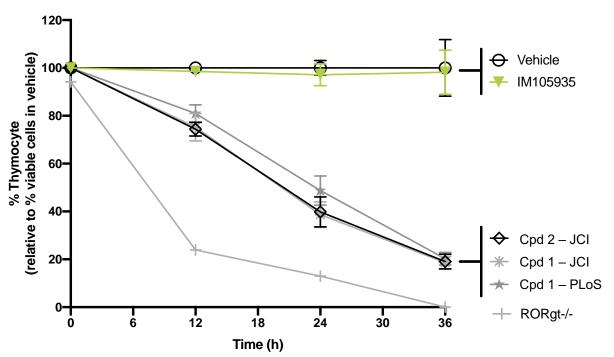
 RORγt provides a survival signal during thymocyte maturation by upregulating the anti-apoptotic gene Bcl-XL


 Deletion of RORyt by knockout reduces the survival/viability of thymocytes, whereas blocking RORyt by IMU-935 does not



IMU-935 Does Not Impact Production of CD4+/CD8+ Cells During Thymocyte Maturation

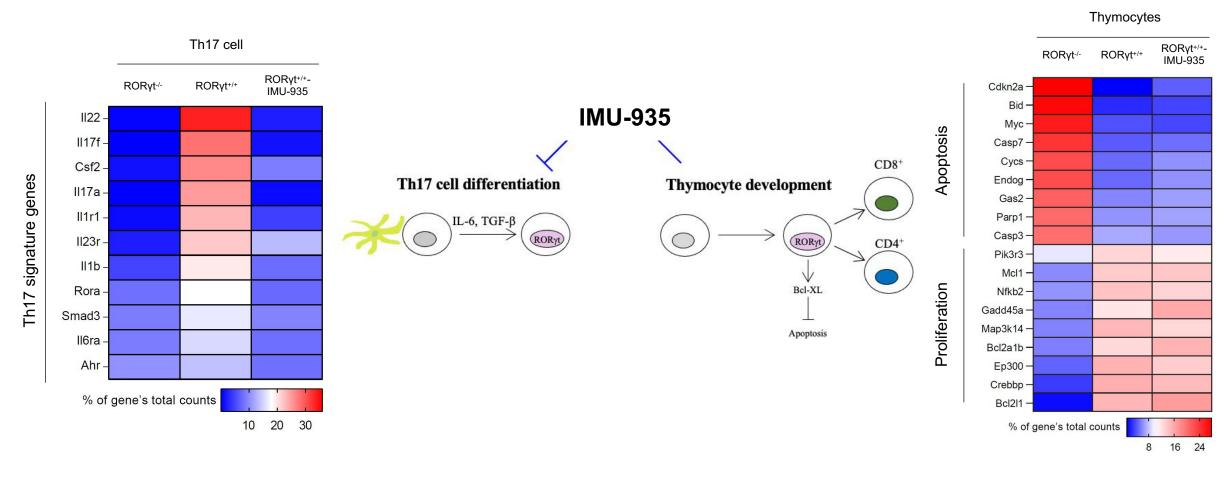
RORyt promotes the differentiation of ISP into DP cells



 Deletion of RORyt by knockout reduces the number of DP cells, whereas blocking RORyt by IMU-935 does not

IMU-935 Does Not Induce Thymocyte Apoptosis

• In contrast to IMU-935, comparator compounds have a negative impact on thymocyte viability and therefore bear the T cell malfunction and risk of lymphoma.



No difference between
IMU-935 and control

Compound Name	Measured Activity	Literature Reference	
Cpd 2 - JCl	Gal4: EC ₅₀ = 6.0 nM	Reported to induce progressive thymic alterations. JCI Insight. 2017;2(5):e91127.	
Cpd 1 - JCl Gal4: EC ₅₀ = 7.9 nM		Reported to induce progressive thymic alterations. JCI Insight. 2017;2(5):e91127.	
Cpd 1 - PLoS	Gal4: EC ₅₀ = 46 nM	Reported to induce thymic aberrations. PLoS One 2017 Nov 20;12(11):e0188391.	

IMU-935 Blocks Th17 Differentiation But Allows Normal Thymocyte Maturation: Gene Expression Profiles

Similar gene expression pattern for Th17 signature genes in RORγt knockout and wild type cells treated with IMU-935

Different gene expression pattern for apoptosis and proliferation signature genes in **ROR**γ **knockout** and **IMU-935 treatment**, but similar for RORγ^{+/+}

Summary

RORγt has two critical functions:

> Th17 cells

 Generation of Th17 cells that mediate autoimmune diseases

> Thymocytes

 Thymocyte development by regulating survival and proliferation

Challenge:

Deletion of RORγt gene or RORγt inhibitors
 may increase the potential risk of lymphoma

Differential effects of IMU-935 on Th17 cells and thymocytes:

- > IMU-935 inhibits the generation of Th17 cells
 - IMU-935 inhibits Th17 differentiation
 - IMU-935 inhibits Th17 signature genes
 - IMU-935 inhibits pathways critical for generating Th17 cells
- > IMU-935 does not affect thymocyte development
 - IMU-935 does not affect thymocyte development
 - IMU-935 does not induce thymocyte apoptosis
 - IMU-935 does not affect expression of the genes critical for thymocyte function

IMU-935

Q&A RORyt

IMU-935

Clinical Development Status

Phase 1 Clinical Trial of IMU-935: Design and Status

PART A

PART **B**

PART C

Evaluation of single ascending doses (SAD)

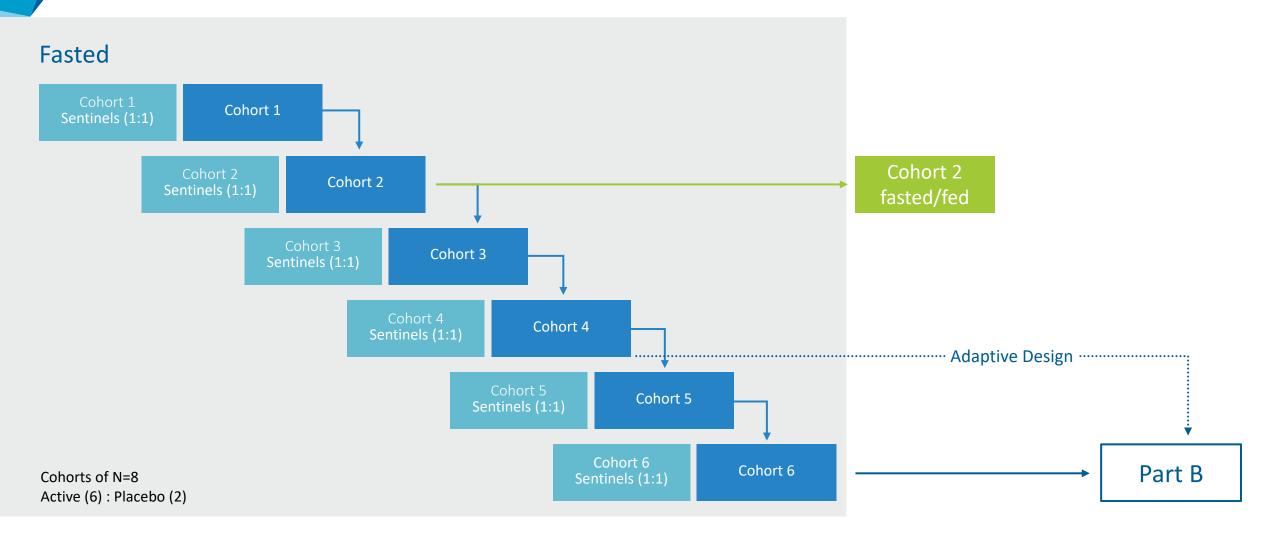
Healthy volunteers randomized to receive single dose of IMU-935 or placebo

Evaluation of multiple ascending doses (MAD)

Healthy volunteers randomized to receive 14-day treatment of either IMU-935 or placebo

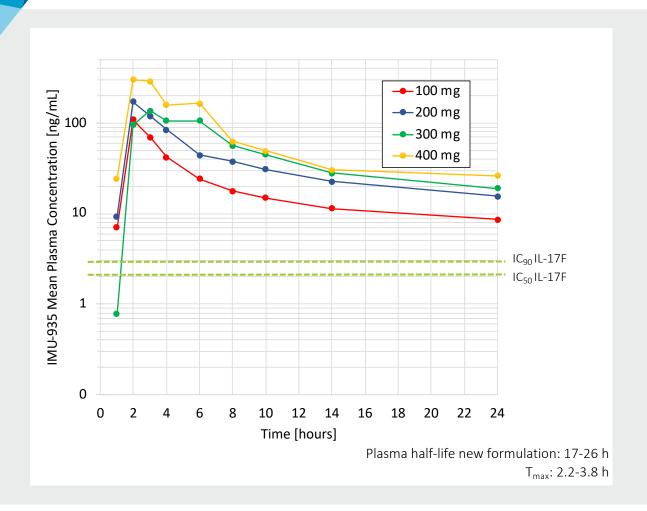
Evaluation of moderate-to-severe psoriasis patients receiving 28-day treatment of either IMU-935 or placebo

- Dose escalation completed (still blinded)
- ➤ IMU-935 was well-tolerated and showed dose-linear PK
- Food effect cohort ongoing


- Currently ongoing
- First multiple dose cohort completed (data evaluation ongoing, still blinded)

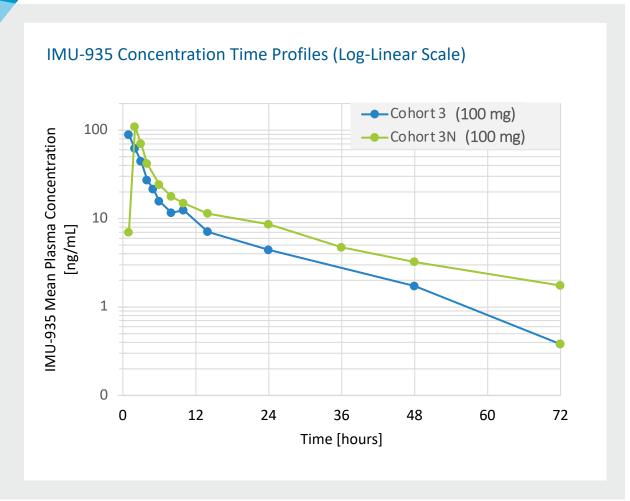
- > Expected to start in Q3/2021
- ➤ Initial human data expected to be available in Q2/2022

PK: pharmacokinetics


Adaptive Transition from Part A (SAD) to Part B (MAD)

Phase 1 Clinical Trial: Interim SAD Pharmacokinetic Results

New Formulation With Dose-Linear AUC


Average Pharmacokinetic Variables

Dose	C _{max} ng/mL	T _{max} (hours)	AUC _{inf} (h* ng/mL)
100 mg (3N)	119	2.20	755
200 mg (4N)	195	2.83	1440
300 mg (5N)	182	3.83	1710
400 mg (6N)	479	2.83	2940

AUC: area under the curve; h: hours; C_{max}: maximum (peak) plasma drug concentration; T_{max}: time to reach maximum (peak) plasma concentration; AUC_{inf}: area under the concentration-time curve to infinity

Phase 1 Clinical Trial: Interim SAD Pharmacokinetic Results Comparison of Lipid-Based and New Formulation

Comparable Pharmacokinetics of Two Different IMU-935 Oral Formulations

Pharmacokinetic Parameters (Mean)	Cohort 3 (N=6) 100 mg Lipid-Based Formulation	Cohort 3N (N=6) 100 mg New Formulation
C _{max} (ng/mL)	95.7	119
T _{max} (hr)	1.33	2.2
t _{1/2} (hr)	16.88	26.05
AUC _{0-inf} (hr*ng/mL)	515	755

Non-compartmental analysis of plasma kinetics

Successful switch from lipid-based pilot formulation to new powder in a capsule formulation with improved properties

Preliminary data

C_{max}: maximum (peak) plasma drug concentration; T_{max}: time to reach maximum (peak) plasma concentration; hr: hours; t_{1/2}: half-life; AUC_{0-inf}: area under the concentration-time curve from zero to infinity

Phase 1 Clinical Trial: Interim Blinded SAD Safety Results Blinded Safety Data Does Not Indicate Safety Signals

	Number (%) of Subjects With TEAEs [Number of TEAEs Reported]				
	IMU-935 100 mg 3N (N=7)	IMU-935 200 mg 4N (N=8)	IMU-935 300 mg 5N (N=8)	IMU-935 400 mg 6N (N=8)	Total (N=31)
TEAEs	7 (100%) [11]	6 (75%) [21]	4 (50%) [14]	7 (88%) [13]	24 (77%) [59]
Study Drug Related TEAEs	1 (14%) [2]	3 (38%) [7]	1 (13%) [1]	4 (50%) [5]	9 (29%) [15]
Moderate or Severe TEAEs	-	2 (25%)* [2]	-	-	2 (6%) [2]
Study Drug Related, Moderate or Severe TEAEs	-	1 (13%)** [1]	-	-	1 (3%) [1]
Subjects with SAEs	-	-	-	-	0 (0%)

Benign Safety Profile

- No dose-dependency in adverse events
- No systematic findings in electrocardiogram or vital signs
- No systematic changes in laboratory parameters
- No maximum tolerated dose reached

Blinded data, i.e., the current TEAEs cannot be assigned yet to the IMU-935 or placebo treatment arms; subjects were randomized 3:1; * Moderate events of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder/shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder pain (unrelated); ** Moderate event of headache (related) and frozen shoulder (related) and frozen shoulder (related) and frozen shoulder (related) and frozen shoulder

Phase 1 Clinical Trial: Interim Blinded SAD Safety Results Related Adverse Events by Incidence

		Number (%) of Subjects With Related TEAEs Occurring in ≥ 2 Subjects [Number of TEAEs Reported]			
MedDRA Preferred Term	IMU-935 100 mg 3N (N=7)	IMU-935 200 mg 4N (N=8)	IMU-935 300 mg 5N (N=8)	IMU-935 400 mg 6N (N=8)	Total Subjects (N=31)
Constipation		1 (13%) [1]		2 (25%) [2]	3 (10%) [3]
Headache		1 (13%) [1]	1 (13%) [1]		2 (6%) [2]
Abdominal Distension		2 (25%) [2]			2 (6%) [2]

Blinded data; subjects were randomized 3:1 TEAE: treatment-emergent adverse event

Phase 1 Clinical Trial: Part C in Psoriasis Patients

Study Design

- Double-blind, placebo-controlled dose escalation study to evaluate safety, tolerability, pharmacodynamics and exploratory efficacy of IMU-935 in patients with moderate-to-severe psoriasis
- Psoriasis patients will receive 28 days of daily treatment (QD or BID)
- Up to 52 psoriasis patients will be enrolled in 2 cohorts:
 - A cohort of 16 patients will receive a low dose of IMU-935 or placebo (at a ratio of 3:1)
 - A cohort of 36 patients will receive a high dose of IMU-935 or placebo (at a ratio of 3:1)
- Expected to start in Q3/2021

Immunic THERAPEUTICS

Phase 1 Clinical Trial: Part C in Psoriasis Patients

Eligibility Criteria

- Age 18 to 65 years (inclusive)
- Diagnosis of chronic plaque-type psoriasis for at least 6 months:
 - PASI score ≥ 10, or PASI score < 10 and DLQI score >10, plus
 - Psoriasis BSA involvement ≥ 10%, plus
 - PGA score ≥ 3
- Failed to fully respond to or is intolerant and/or has a contraindication to at least one topical therapy for psoriasis

Key Objectives/Endpoints

Primary:

Safety and tolerability

Secondary:

- Trough plasma concentrations of IMU-935
- Effects on skin symptoms (PASI, DLQI, BSA, PGA, itch rating scale)

Exploratory:

 Pharmacodynamic markers (skin biopsies, cytokines)

PASI: Psoriasis Area and Severity Index; DLQI: Dermatology Quality of Life Index; BSA: body surface area; PGA: Physician Global Assessment

Preclinical Anti-Cancer Activity

Prostate Cancer

Introduction & Definitions

- Metastatic prostate cancer has spread to the bone, distant lymph nodes or other parts of the body.
- Evidence of disease progression while being treated with androgen deprivation therapy (ADT) and having castrate levels of serum testosterone (<50 ng/dL) is considered castration-resistant prostate cancer (CRPC).
- The standard staging system for newly diagnosed prostate cancer is that of the American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC).

CLASSIFICATION	DEFINITION			
TUMOR				
Tx	Tumor cannot be evaluated (due to lack of information)			
то	No evidence of a primary tumor			
T1*	Tumor was not detected during a digital rectal exam (DRE) and cannot be seen on imaging studies (tumor may be discoverd during surgery for a reason other cancer)*			
T2 T2a T2b T2c	Tumor can be detected during a DRE but is present in the prostate only Tumor is in half or less than one side (lobe) of the prostate Tumor is in more than half of one prostate lobe, but has not yet invaded the other lobe Tumor is in both prostate lobes			
T3 T3a T3b	Tumor extends outside of the prostate Tumor extends outside the prostate on one or both sides Tumor has spread to the seminal vesicles (the glands on each side of the bladder)			
T4	Tumor has spread to tissues near the prostate other than the seminal vesicles, such as the bladder or wall of the plevis			
Nearby (regional) lymph nodes (N)				
Nx	Nearby lymph nodes are not evaluated			
N0	No cancer cells are found in nearby lymph nodes			
N1	Cancer cells are found in nearby lymph nodes			
Distant Metastasis (M)				
M0 M1 M1a M1b M1c	Cancer has not spread beyond the prostate Cancer has spread beyond the prostate Cancer has spread to distant lymph nodes Cancer has spread to bone Cancer has spread to another organ or site, with or without bone disease			

The American Joint Committee on Cancer (AJCC) TNM Staging

Standard of Care in Metastatic Castration-Resistant Prostate Cancer (mCRPC)

ESMO Guidelines

- Abiraterone or enzalutamide is recommended for asymptomatic/ mildly symptomatic men with chemotherapy-naive mCRPC
- Docetaxel is recommended for men with mCRPC
- In the post-docetaxel setting, abiraterone, enzalutamide and cabazitaxel are recommended options
- ²²³Ra is recommended for men with bone-predominant, symptomatic mCRPC
- The use of a second AR inhibitor (abiraterone after enzalutamide or vice versa) is not recommended
- When androgen receptor splice variant 7 (AR-V7) is detected in circulating tumor cells, patients are less likely to respond to abiraterone and enzalutamide than AR-V7-negative patients

Localised disease	Low risk	Active surveillance		
Locument discuss	2011 11211	Brachytherapy		
		RP		
		Radical RT		
	Intermediate risk	RP		
		Radical RT ± neoadjuvant ADT		
		Brachytherapy		
		Active surveillance		
	High risk	Long-term ADT + radical RT		
	# 7	± neoadjuvant docetaxel		
		RP + pelvic lymphadenectomy		
Locally advanced disease		Neoadjuvant ADT + radical RT adjuvant ADT		
		± neoadjuvant docetaxel		
		RP + pelvic lymphadenectomy		
M0 CRPC	High risk	ADT + apalutamide		
		ADT + darolutamide		
		ADT + enzalutamide		
Metastatic	Hormone-naive	ADT + abiraterone		
disease		ADT + docetaxel		
		ADT + enzalutamide		
		ADT + apalutamide		
		RT for low volume		
		ADT alone for frail patients wh cannot tolerate the above treatments		
		Bone health agent		
	Castration-resistant	Abiraterone		
	(first line)	Docetaxel		
		Enzalutamide		
		²²³ Ra for patients unfit for		
		above treatments (and		
		bone-only metastases)		
	Second line or post-	Abiraterone		
	docetaxel	Cabazitaxel		
		Enzalutamide ²²³ Ra		

²²³Ra, radium-223; ADT, androgen deprivation therapy; MO CRPC, non-metastatic castration-resistant prostate cancer; RP, radical prostatectomy; RT, radiotherapy.

Parker C, Castro E, Fizazi K, et al. Ann Oncol. 2020;31(9):1119-1134 AR: androgen receptor; ²²³Ra: radium-223

Resistance Formation as a Key Challenge in CRPC

Published in final edited form as:

Nat Med. 2016 May; 22(5): 488–496. doi:10.1038/nm.4070.

ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer

Junjian Wang¹, June X. Zou¹, Xiaoqian Xue², Demin Cai¹, Yan Zhang², Zhijian Duan¹, Qiuping Xiang², Joy C. Yang³, Maggie C. Louie⁴, Alexander D. Borowsky⁵, Allen C. Gao^{3,8}, Christopher P. Evans^{3,8}, Kit S. Lam^{1,8}, Jianzhen Xu⁶, Hsing-Jien Kung^{1,8}, Ronald M. Evans⁷, Yong Xu², and Hong-Wu Chen^{1,8}

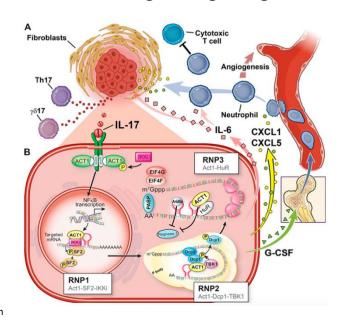
In patients, prostate cancer usually can be controlled for multiple years

However, mutations can arise which make prostate cancer cell clones insensitive to hormone signaling inhibition

So called V7 mutations are frequently leading to resistance towards hormone therapy

Targeting ARV7 expression may be a good strategy to overcome resistance in CRPC

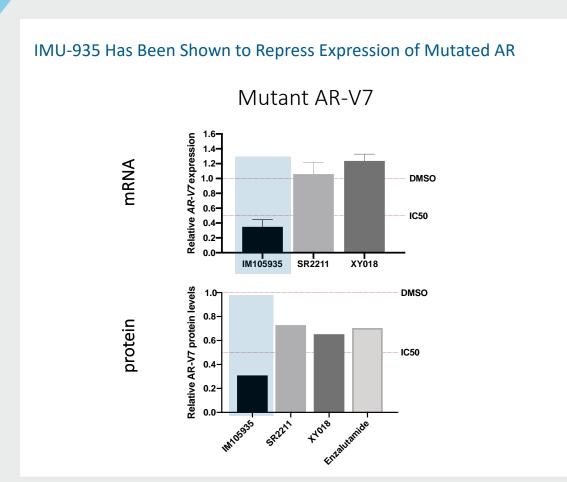
IMU-935 As Treatment Option in Castration-Resistant Prostate Cancer – Synergistic Effects by Targeting RORγ and RORγt

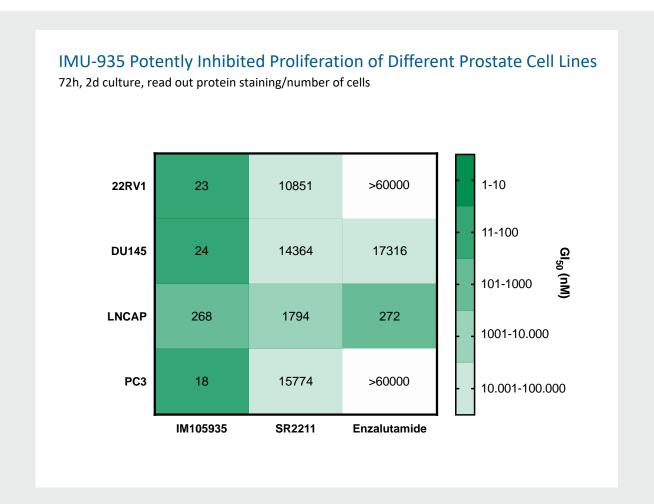


Inhibition of RORy

- The androgen-receptor mutant variant AR-V7 lacks the ligandbinding domain, which is the target of enzalutamide and abiraterone, but remains constitutively active as a transcription factor.
- IMU-935 represses the mutated androgen receptor AR-V7 expression – and subsequent target genes.

- IL-17 contributes to the formation, growth and metastasis of cancers.
 - Induces mitogenic signaling


Differentiation of MDSCs


- IL-17 mediates the induction, recruitment and expansion of MDSCs.
- Next to IL-17 suppression via RORγt inhibition, IMU-935 also targets DHODH. Targeting this enzyme is an additional route to stop these tumor supportive cells.
- Supportive data regarding cell differentiation has been observed in AML cell lines using closely related molecules.

MDSC: myeloid-derived suppressor cells; AML: acute myeloid leukemia; Th: T helper; IL: interleukin Illustration: Zhao, J., Chen, X., Herjan, T., Li, X.; J Exp Med 6 January 2020; 217 (1): e20190297

IMU-935 Demonstrated RORy-Dependent Effects in CRPC Cells

AR-FL: full length/wildtype; AR-V7: variant 7/mutated form; mRNA experiment: 1μM, 48h; protein expression: 6μM, 48h; SR2211 and XY018 are RORy inverse agonists

Planned Phase 1 Study in Castration-Resistant Prostate Cancer (CRPC)

77

Johann Sebastian de Bono, M.D., Ph.D.

The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust

"IMU-935 possesses a unique mechanism of action which may prove transformative in its ability to effectively treat a range of underserved diseases. Preclinical studies have shown that IMU-935 potently suppresses the expression of IL-17, indicating that it may also inhibit tumorigenesis, and suppresses the expression of AR-V7 in prostate cancer cell lines, thus potentially inhibiting tumor growth in CRPC patients. I am looking forward to collaborating with Immunic on this important phase 1 clinical trial in metastatic CRPC."

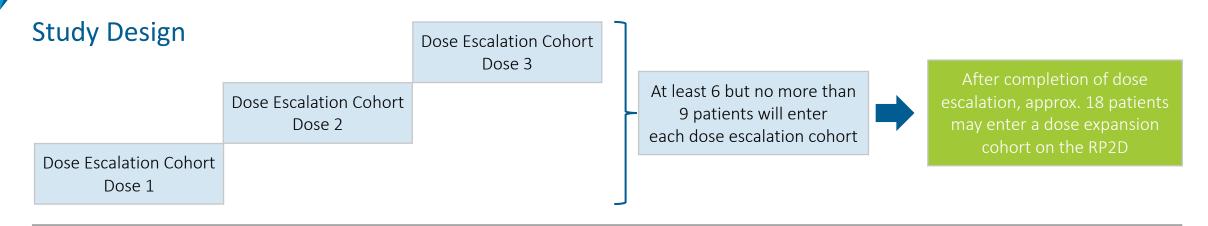
Phase 1 Clinical Trial of IMU-935 in CRPC

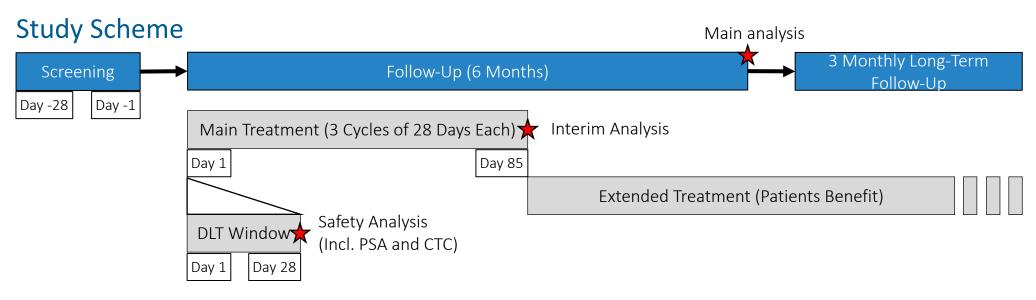
Study Design

- Open-label dose escalation trial to evaluate safety, tolerability, anti-tumor activity, and pharmacokinetics of IMU-935 in patients with progressive, metastatic castration-resistant prostate cancer
- Dose escalation follows a Bayesian optimal interval (BOIN) design
- An expansion cohort can be added at a therapeutically active dose level
- Main treatment will be single agent IMU-935 for 3 cycles of 28 days each
- Patients who benefit can receive extended treatment
- At each dose level:
 - A safety analysis will be performed to consider start of next dose cohort
 - An interim activity analysis will be performed upon completion of 3 months treatment
 - A main cohort analysis will be performed when the last patient in treatment reaches the 6 months follow-up visit

Principal Investigator

Johann Sebastian de Bono, M.D., Ph.D.


Regius Professor of Cancer Research and Professor in Experimental Cancer Medicine


The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust

London, United Kingdom

Phase 1 Clinical Trial of IMU-935 in CRPC

RP2D: recommended phase 2 dose; DLT: dose-limiting toxicity; PSA: prostate-specific antigen; CTC: circulating tumor cells

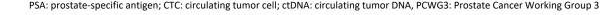
Phase 1 Clinical Trial of IMU-935 in CRPC

Eligibility Criteria

- Age ≥ 18 years
- Histologically or cytologically confirmed adenocarcinoma of the prostate
- Progressive disease according to PCWG3 criteria
- Castration-resistant disease
- Metastatic disease

Key Objectives/Endpoints

Primary:


- Dose-limiting toxicity
- Recommended phase 2 dose (RP2D)

Secondary:

PSA, CTC & radiographic response

Exploratory:

- Disease progression & survival
- Biomarkers (biopsies, ctDNA, cytokines, etc.)
- Population pharmacokinetics (popPK)



Q&A CRPC

Summary

IMU-935: An Emerging Oral IL-17 Inhibitor

- IMU-935 has been observed to be a potent RORγt inhibitor with an IC₅₀ on IL-17A and IL-17F inhibition of ≤ 5 nM
- IMU-935 demonstrated a selective effect of inhibition of Th17 differentiation while maintaining physiological function of thymocyte maturation
- IMU-935 is currently tested in a phase 1 clinical trial, which is planned to be expanded to patients with moderate-to-severe psoriasis in Q3/2021
- In the first single ascending dose part of the phase 1 trial, IMU-935 demonstrated suitable pharmacokinetic properties
- A clinical phase 1 trial in patients with mCRPC is expected to start in Q4/2021, with Johann de Bono, M.D., Ph.D., as Principal Investigator
- Initial human data from psoriasis patients expected to be available in Q2/2022

Thank You!

Jessica Breu

Head of IR & Communications

Phone: +49-89-2080477-09

Email: ir@imux.com

Web: www.imux.com

