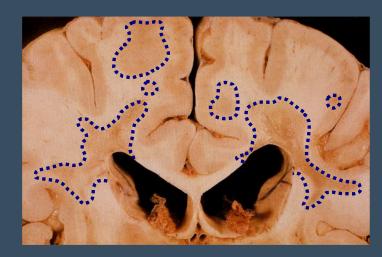
Multiple Sclerosis Treatment Landscape and Unmet Needs

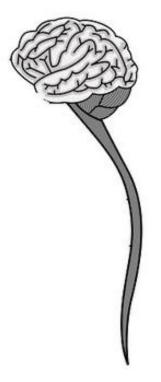
Robert Fox, MD Staff Neurologist, Mellen Center for MS Vice Chair for Research, Neurological Inst. Professor of Neurology Cleveland Clinic, Cleveland, Ohio

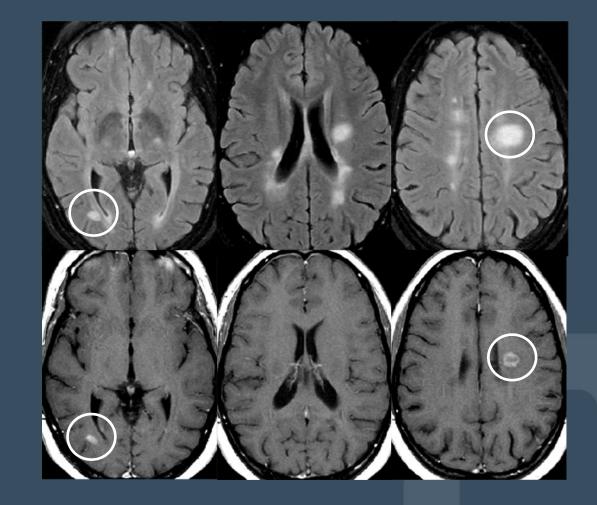
Disclosures

 I have received consulting fees from Actelion, Biogen, Celgene, EMD Serono, Genentech, Immunic, Novartis, Sanofi, Teva, and TG Therapeutics; and research support from Biogen and Novartis

Multiple Sclerosis Treatment Landscape and Unmet Needs


- Introduction to multiple sclerosis
- Overview of MS therapy landscape
- What to learn from teriflunomide
- Unmet treatment needs in MS


Multiple Sclerosis Treatment Landscape and Unmet Needs


- Introduction to multiple sclerosis
- Overview of MS therapy landscape
- What to learn from teriflunomide
- Unmet treatment needs in MS

What is Multiple Sclerosis?

- MS = multiple scars
- Immune system attacks the brain and spinal cord

Multiple Sclerosis

- US: 400,000
 - Worldwide: 2.3 million

Multiple Sclerosis

- US: 400,000 As of March 2019: >900,000 people with MS in US
 - Worldwide: 2.3 million (probably much higher)
- Women more commonly than men (2:1)
- Typical age of onset: 20s 30s
- Economic costs (US): \$20 billion per year

Typical MS Symptoms

Decreased concentration

Anxiety Double vision

Poor coordination

Bladder urgency

Decreased libido

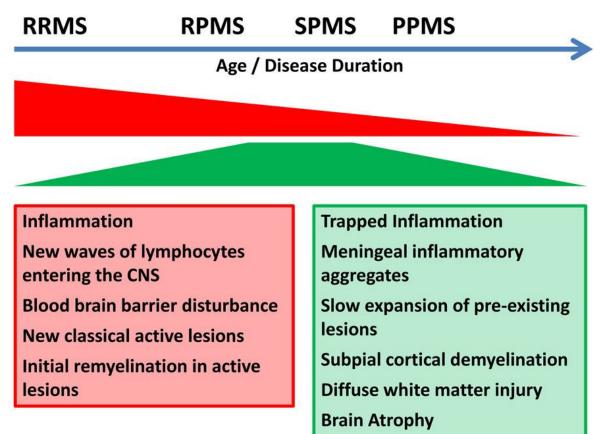
Pins and needles

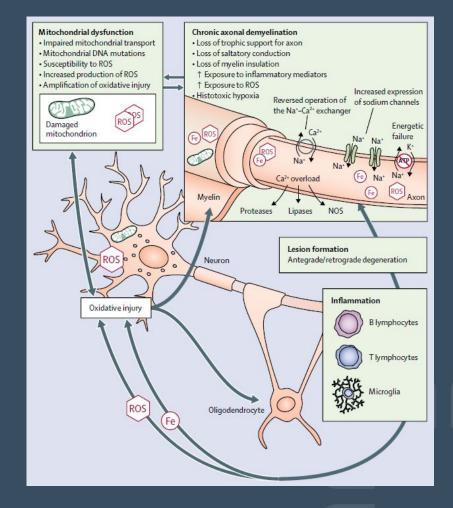
Walking problems

Depression

Memory loss

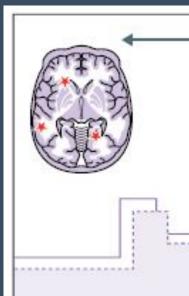
Blurry vision

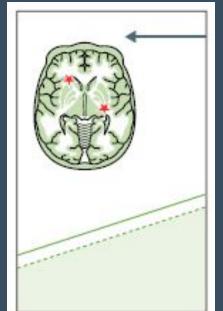

Erectile dysfunction

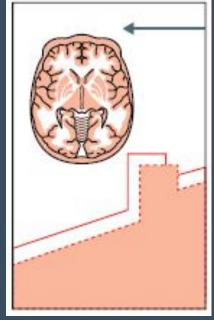

Incontinence

Numbness

Stiffness


MS pathophysiology


a


Different Forms of MS

Relapsing remitting

Secondary progressive

Primary Progressive

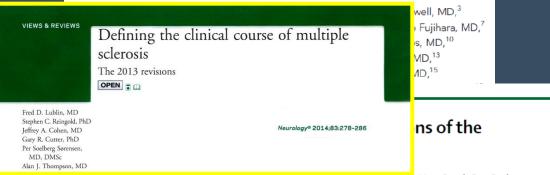
Diagnostic Criteria

Defining the clinical course of multiple sclerosis:

Results of an international survey

Fred D. Lublin

A


Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis

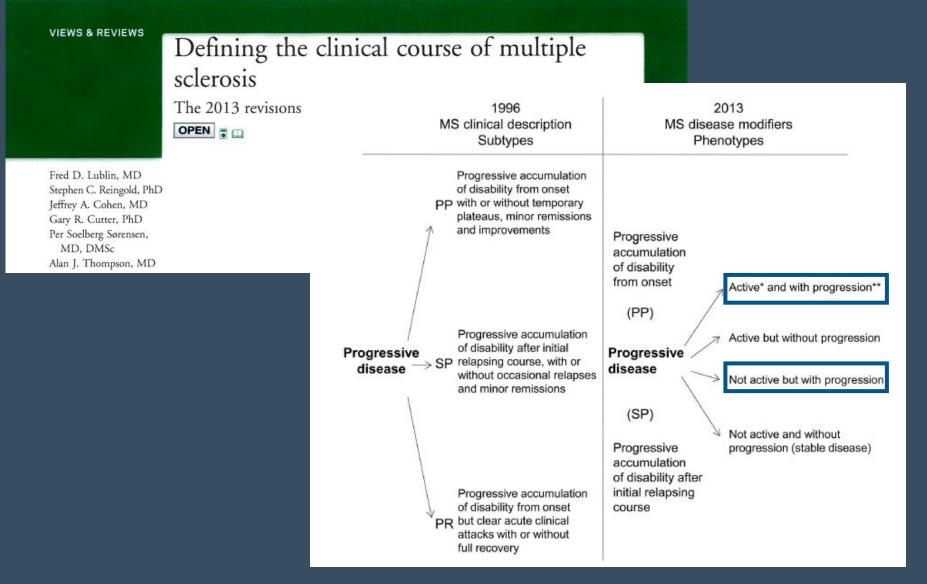
W. Ian McDonald, FRCP,¹ Alistair Compston, FRCP,² Gilles Edan, MD,³ Donald Goodkin,⁴ Hans Parar Harring: MD,⁵ Ericl D. Lublin: MD,⁶ Hanse F. McEadand, MD,⁷ Donald W. Don, MD,⁸

Diagnostic Criteria for Multiple Sclerosis: ^{er, M} 2005 Revisions to the "McDonald Criteria"

Chris H. Polman. MD. PhD.¹ Stephen C. Reinvold. PhD.² Gilles Edan. MD.³ Massimo Filippi. MD.⁴ Hans-I

Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria

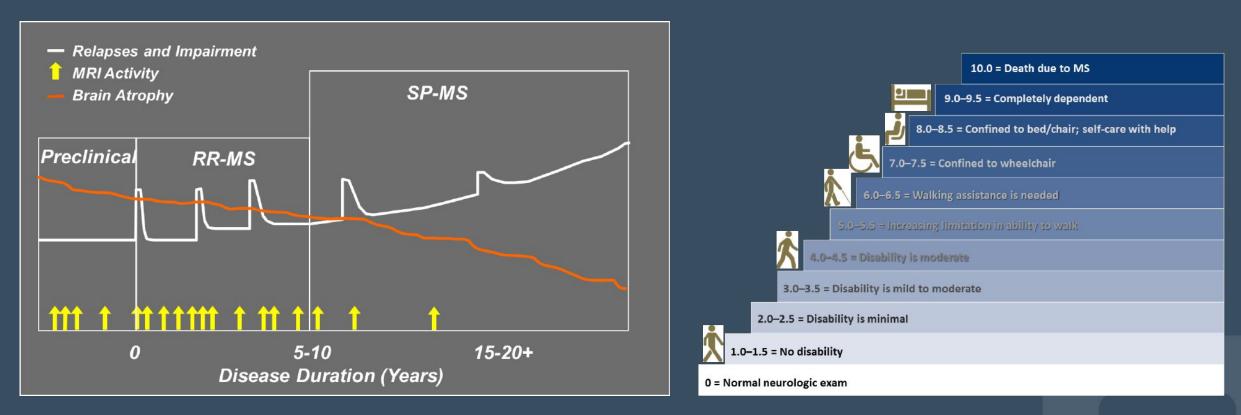
Alan J Thompson, Brenda L Banwell, Frederik Barkhof, William M Carroll, Timothy Coetzee, Giancarlo Comi, Jorge Correale, Franz Fazekas, Massimo Filippi, Mark S Freedman, Kazuo Fujihara, Steven L Galetta, Hans Peter Hartung, Ludwig Kappos, Fred D Lublin, Ruth Ann Marrie, Aaron E Miller, David H Miller, Xavier Montalban, Ellen M Mowry, Per Soelberg Sorensen, Mar Tintoré, Anthony L Traboulsee, Maria Trojano, Bernard M J Uitdehaaq, Sandra Vukusic, Emmanuelle Waubant, Brian G Weinshenker, Stephen C Reingold, Jeffrey A Cohen 1996: Classified the disease course - RR, SP, PP, PR 2001: Introduced CIS; integrated MRI into diagnostic criteria


2005: Clarified dissemination in time, MRI use, and PPMS criteria

2010: simplified criteria; allowed dx with one episode, and expanded applicability

2013: revised phenotype descriptors to allow concomitant relapsing and progressive aspects of MS

2017: updated utility of CSF; simplified and expanded MRI criteria

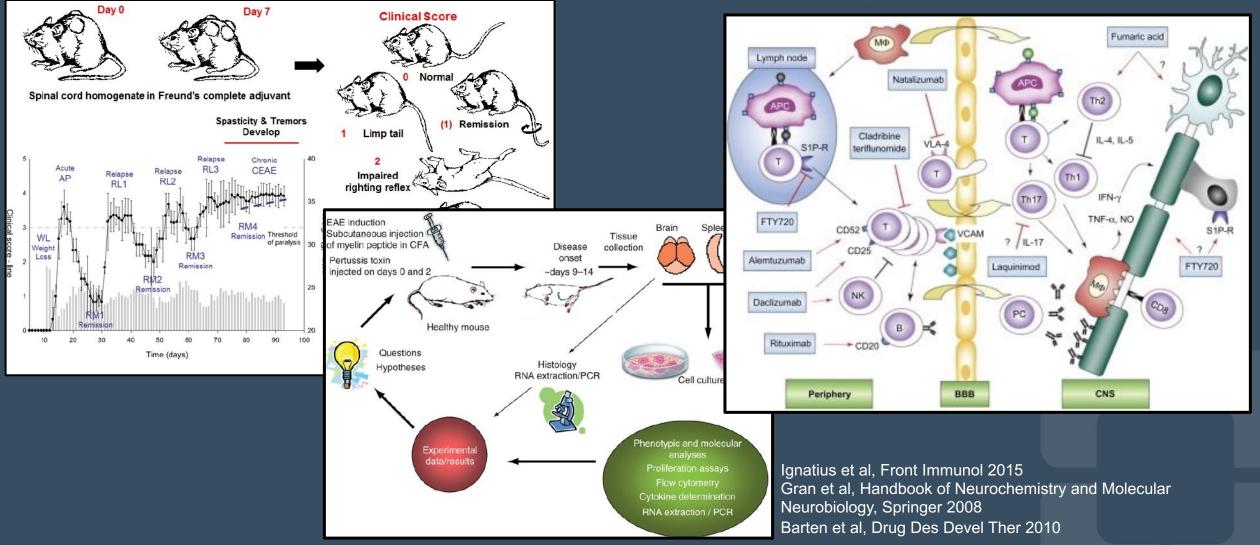

Continually integrating new science and insights to characterize disease

Regulators (EMA and FDA) have now divided progressive MS into "active" and "not active," but left the SPMS and PPMS in place

Lublin FD et al. Neurology, 2014;83:1-9

Natural History of Relapsing MS

MS Disease Course

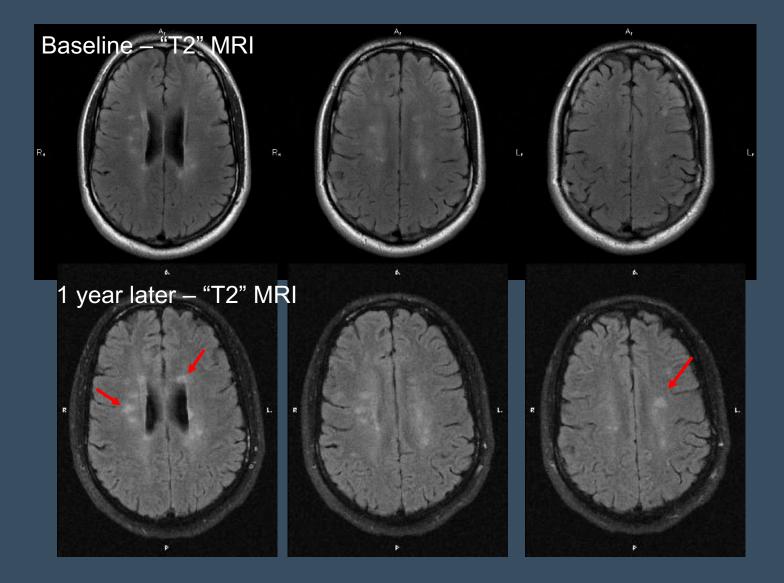

Expanded Disability Status Scale - EDSS

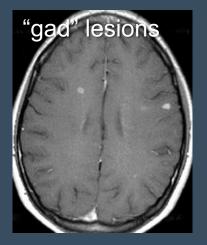
Multiple Sclerosis Treatment Landscape and Unmet Needs

- Introduction to multiple sclerosis
- Overview of MS therapy landscape
- What to learn from teriflunomide
- Unmet treatment needs in MS

Preclinical models

Experimental Autoimmune Encephalomyelitis

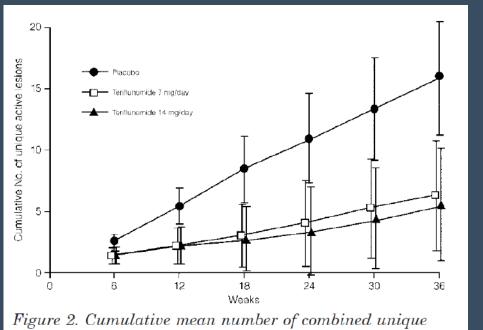



Preclinical models

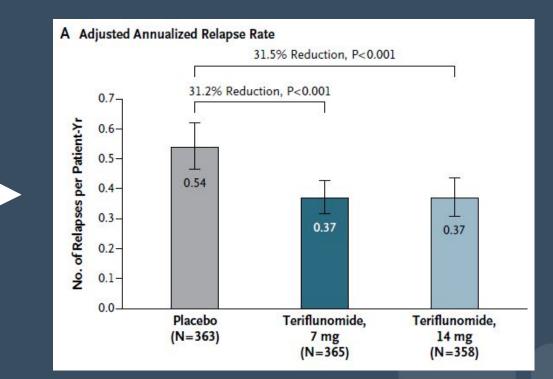
Experimental Autoimmune Encephalomyelitis

- Useful to:
 - Understand basic mechanisms of CNS inflammation
 - Test new potential mechanisms
 - Test new potential therapies
- Limitations:
 - Sometimes finds incorrect answer (anti-TNFα)
 - Hasn't been helpful with progressive MS

Phase 2 trial metric

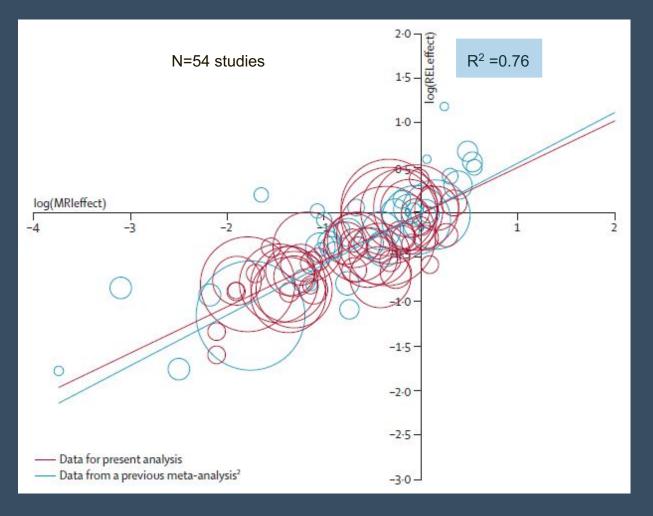


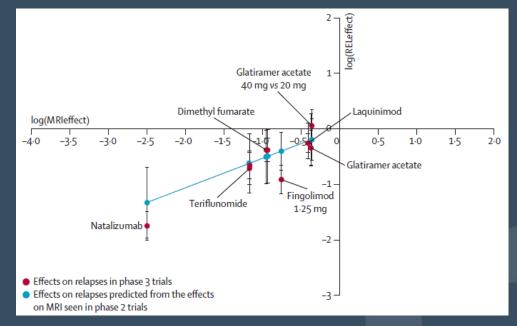
T2 and Gad lesions:


- Objective
- Easily detected and counted (software)
- Relatively specific for MS
- Standard primary outcome for phase 2 trial in relapsing MS

Phase 2 trial metric

active lesions adjusted for baseline.

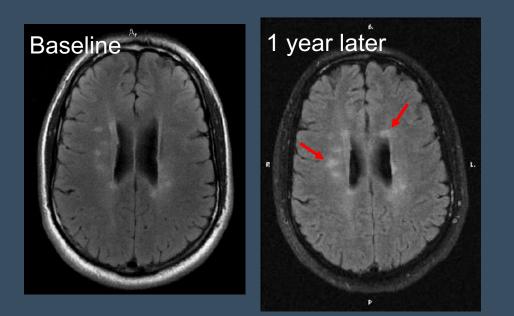

MRI outcome from Phase II teriflunomide trial



Clinical outcome from Phase III teriflunomide trial

> O'Connor et al, Neurol 2006 O'Connor et al, NEJM 2011

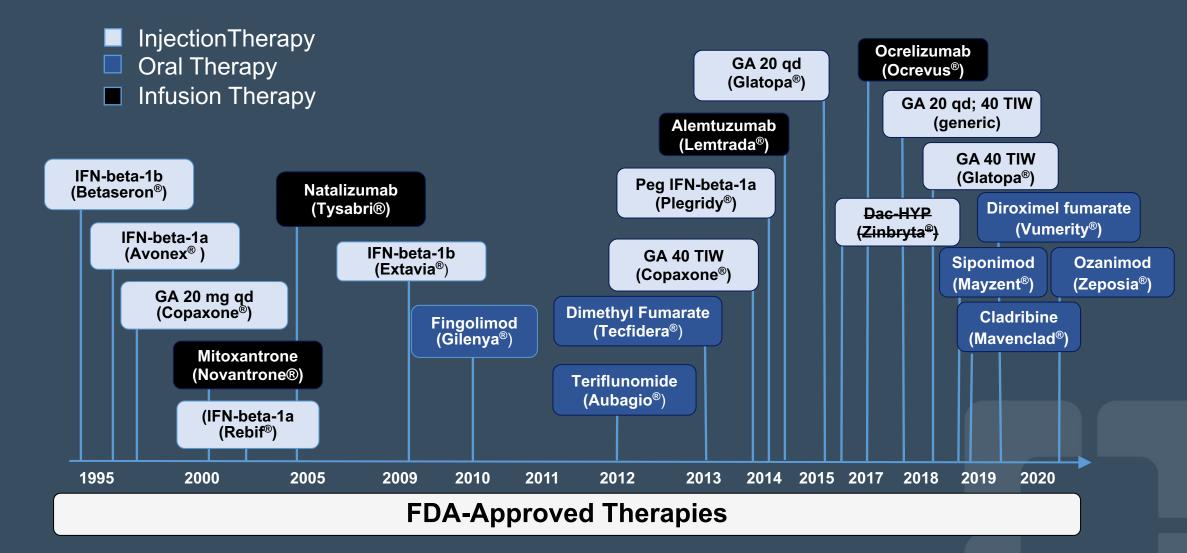
MRI Predicting Relapse Reduction in RRMS


Sormani et al, Lancet Neurol 2013

Phase 2 trial metric

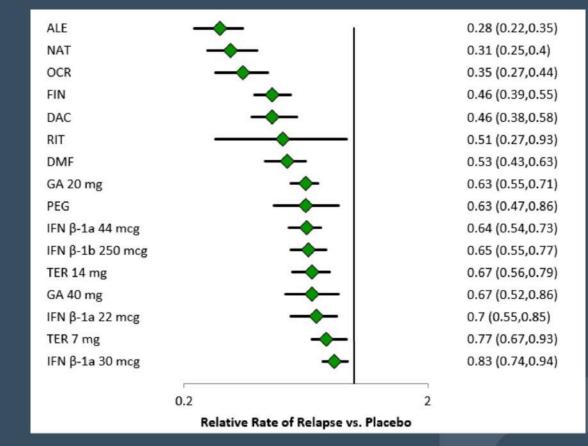
- New/enlarging T2 & Gad lesions
 - Standard metric for phase 2 relapsing MS trials
 - Analyzed separately or together ("combined unique")
 - Never received regulatory acceptance (but don't need it)
- Equivalent metric for progressive MS is unknown
 - Whole brain atrophy
 - Advanced imaging methods are being tried

Goal of MS Therapies


- Decrease inflammation
 - Clinical relapses (episodes)
 - New lesions on MRI

- Decrease permanent injury
 - Accumulation/progression of disability
 - Brain atrophy

MS Therapy – Embarrassment of Riches

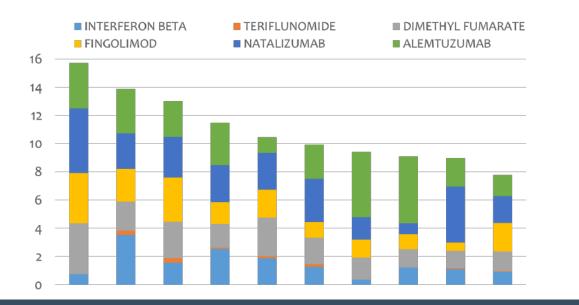

Adapted from Wingerchuk & Weinshenker. BMJ. 2016

DMTs and Annualized Relapse Rate

The most effective	Compared with Placebo		Hazard Ratio (95% Crl)
	Alemtuzumab	_ -	0.31 (0.26, 0.38)
	Natalizumab	-	0.31 (0.27, 0.36)
	Ocrelizumab	_ - -	0.37 (0.31, 0.46)
μ	Cladribine	•	0.42 (0.34, 0.52)
Ē	Fingolimod	_	0.47 (0.41, 0.53)
	Daclizumab		0.47 (0.42, 0.54)
	Dimethyl fumarate	_	0.48 (0.42, 0.55)
	Peginterferon	_	0.64 (0.51, 0.80)
	Glatiramer acetate 40		0.66 (0.55, 0.78)
	Glatiramer acetate 20		0.69 (0.62, 0.76)
	Interferon 1a 44		0.69 (0.60, 0.79)
	Teriflunomide 14		0.69 (0.58, 0.81)
	Interferon 1b 250		0.70 (0.61, 0.82)
	Teriflunomide 7	_	0.73 (0.63, 0.85)
	Interferon 1a 30		0.84 (0.77, 0.93)
	0.2		1

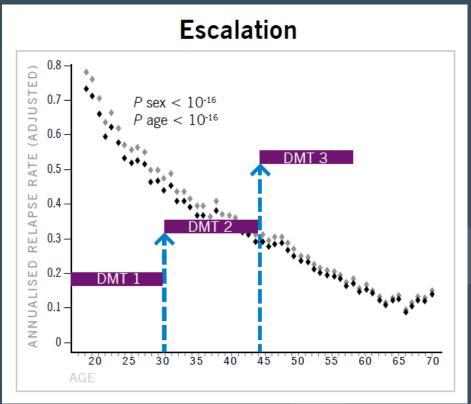
Forest plot of network meta-analysis comparing DMTs with placebo for annualized relapse rate, Horizontal bars: 95% credible intervals.

Lucchetta RC et a. CNS Drugs. 2018; 32:813-26.



Forest Plot for Annualized Relapse Rate: relative risk for each drug compared to placebo.

California Institute for Clinical and Economic Review, 2017.


What is the best MS therapy?

NHS England spend on MS drugs, 2016-2017: Ten highest spending Trusts

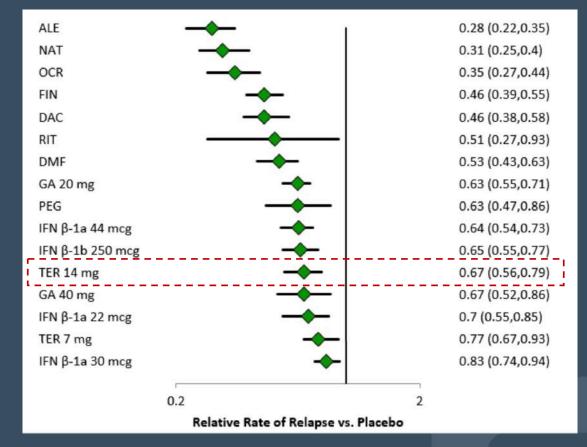
Significant Variability

Currently, there are no guidances on which therapy to use when. Typical treatment approach:

Multiple Sclerosis Treatment Landscape and Unmet Needs

- Introduction to multiple sclerosis
- Overview of MS therapy landscape
- What to learn from teriflunomide
- Unmet treatment needs in MS

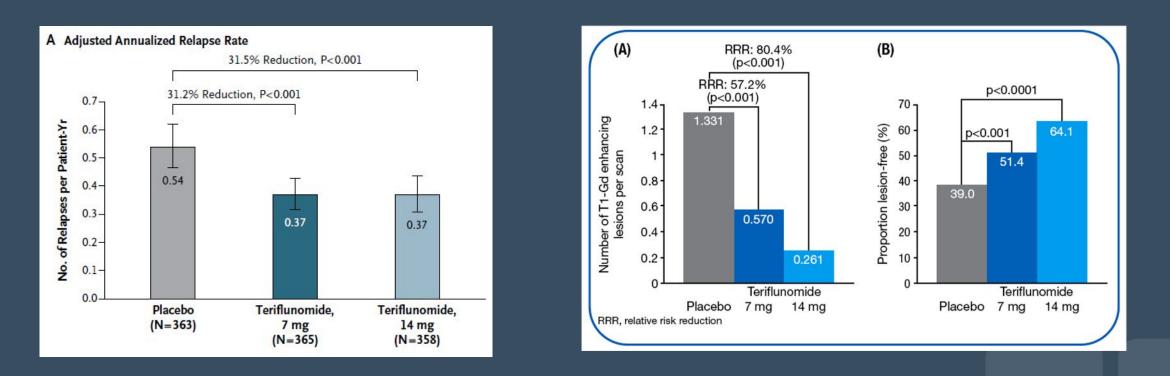
Teriflunomide


- Orally available compound with daily administration
- Reasonably well tolerated
- Mechanism of action: blocks dihydro-orotate dehydrogenase (DHODH)
 - Inhibits pyrimidine (DNA) synthesis
 - Inhibits T-cell and B-cell proliferation

DMTs and Annualized Relapse Rate

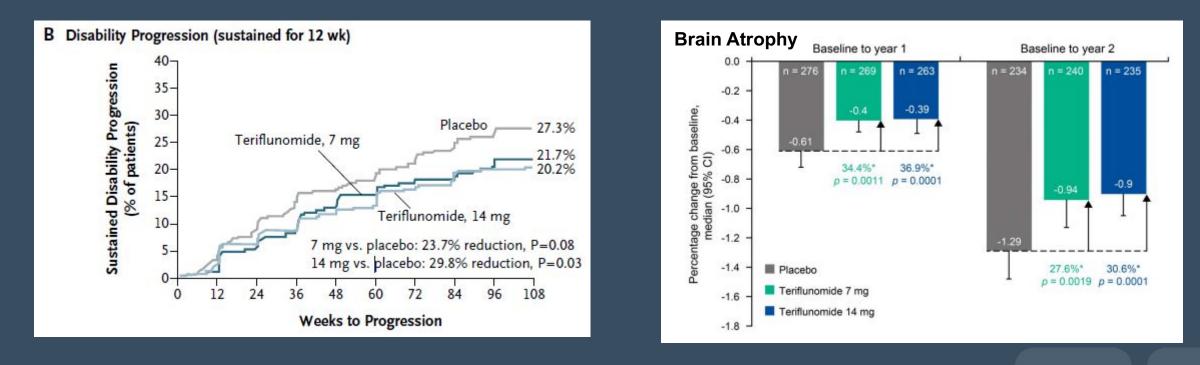
The most effective	Compared with Placebo	Hazard Ratio (95% Crl)
	Alemtuzumab	0.31 (0.26, 0.38)
	Natalizumab	0.31 (0.27, 0.36)
lost	Ocrelizumab	0.37 (0.31, 0.46)
The m	Cladribine	0.42 (0.34, 0.52)
	Fingolimod	0.47 (0.41, 0.53)
	Daclizumab	
	Dimethyl fumarate	0.48 (0.42, 0.55)
	Peginterferon	0.64 (0.51, 0.80)
	Glatiramer acetate 40	0.66 (0.55, 0.78)
	Glatiramer acetate 20	0.69 (0.62, 0.76)
	Interferon 1a 44	0.69 (0.60, 0.79)
	Teriflunomide 14	0.69 (0.58, 0.81)
1	Interferon 1b 250	0.70 (0.61, 0.82)
	Teriflunomide 7	0.73 (0.63, 0.85)
	Interferon 1a 30	0.84 (0.77, 0.93)
	0.2	ť

Forest plot of network meta-analysis comparing DMTs with placebo for annualized relapse rate, Horizontal bars: 95% credible intervals.


Lucchetta RC et a. CNS Drugs. 2018; 32:813-26.

Forest Plot for Annualized Relapse Rate: relative risk for each drug compared to placebo.

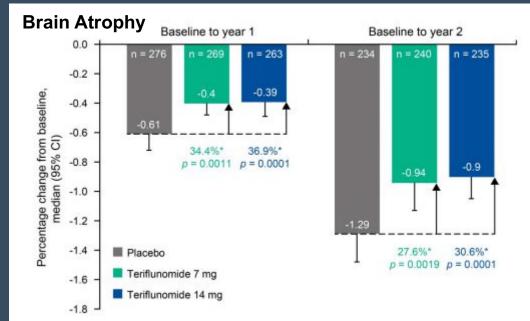
California Institute for Clinical and Economic Review, 2017.


Teriflunomide TEMSO Trial

Solid MRI benefits and reasonable relapse rate reduction

O'Connor et al, NEJM 2011

Teriflunomide TEMSO Trial


- Surprisingly large benefits in slowing progression of disability and atrophy
- Similar disability benefits in other Ph3 TOWER (no MRI was done)

O'Connor et al, NEJM 2011 Radue et al, Neurol 2017

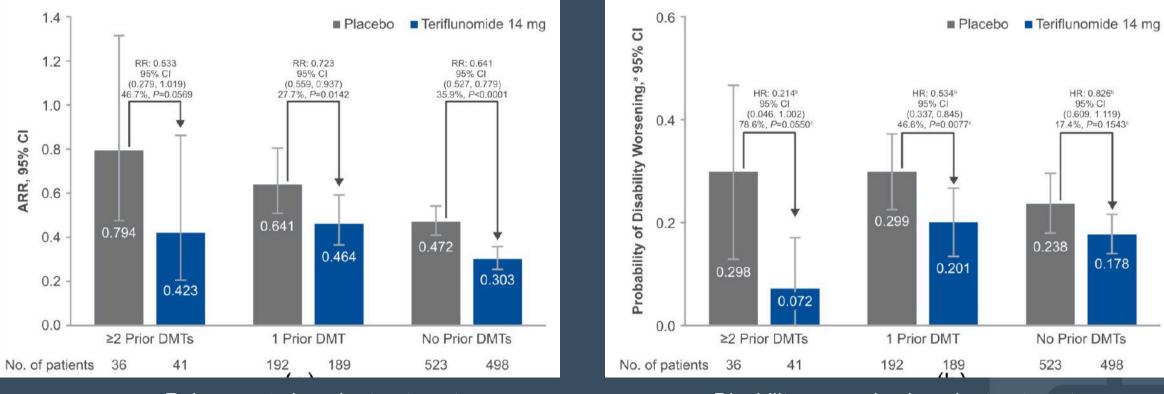
Teriflunomide TEMSO Trial

	Study 1: WA21092 (OPERA I)		Study 2: WA21093 (OPERA II)	
Endpoints	Ocrevus 600 mg (n=410)	IFN 44 mcg (n=411)	Ocrevus 600 mg (n=417)	IFN 44 mcg (n=418)
MRI Endpoints				
Mean number of T1 Gd-enhancing lesions per MRI scan	0.016	0.286	0.021	0.416
Relative reduction	94% (p	<0.0001)	95% (p	⊲0.0001)
Mean number of new and/or enlarging T2 hyperintense lesions per MRI scan	0.323	1.413	0.325	1.904
Relative reduction	77% (p	<0.0001)	83% (p	<0.0001)
Percentage change in brain volume from Week 24 to week 96	-0.572	-0.741	-0.638	-0.750
Relative reduction in brain volume loss	22.8% (1	=0.0042) ⁶	14.9% (p=0.0900)

• Teriflunomide's slowed atrophy compares favorably to ocrelizumab

Radue et al, Neurol 2017

Teriflunomide vs. Dimethylformamide: Gray Matter and Cortical Atrophy

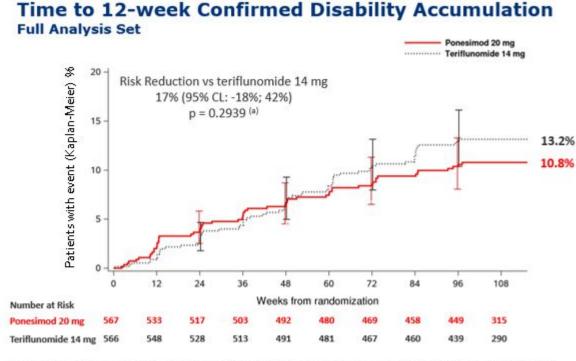


Teriflunomide's atrophy slowing is favorable to dimethyl fumarate

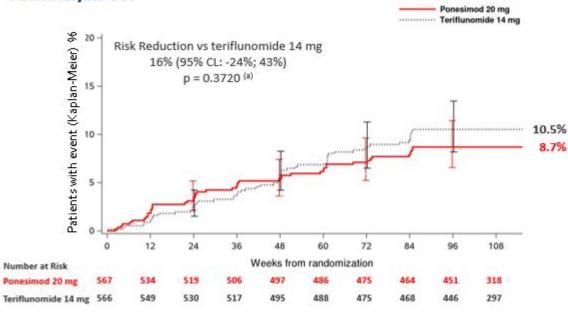
Zivadinov et al, J Clin Med. 2019

Prior treatment and teriflunomide efficacy

Post-hoc analysis from pooled TEMSO and TOWER datasets (2,251 patients)


Relapse rate by prior treatment

Disability worsening by prior treatment


Teriflunomide provides strong efficacy even after use of multiple prior DMTs

Freedman M et al. Mult Scler. 2018

Teriflunomide compared to S1P ponesimod

(a) Non-significant result: Formal testing procedure stopped. Stratified log-rank test p-value and stratified Cox regression risk reduction estimate displayed.

(a) Exploratory, not formally tested. Stratified log-rank test p-value and stratified Cox regression risk reduction estimate displayed.

Time to 24-week Confirmed Disability Accumulation Full Analysis Set

Kappos L et al. ECTRIMS 2019; Stockholm. Abstract 93

Comparative Disability Effects: Teriflunomide vs. Fingolimod and Dimethyl fumarate

	Dimethyl fumarate 240 mg bid		Fingolimod 0.5 mg qd		Teriflunomide 14 mg qd			
	DEFINE (N=818) ^a (Gold, 2012)	CONFIRM (N=722) ^a (Fox, 2012)	DEFINE+ CONFIRM pooled (N=1540) ^a (Fox, 2013)	FREEDOMS N=843(Kappos, 2010)	FREEDOMS II N=713(Calabresi, 2014)	TEMSO (N=721) ⁿ (O'Connor, 2011)	TOWER (N=758) ^a (Confavreux, 2014)	TEMSO + TOWER pooled (N=1479) ^a (Kappos, 2013
Proportion of patients with								
CDW ^b								
Placebo	0.27	0.17	0.222	0.241	0.290	0.273	0.197	0.240
Intervention	0.16	0.13	0.146	0.177	0.253	0.202	0.158	0.179
Hazard ratio	0.62	0.79	0.68	0.70	0.83	0.70	0.68	0.695
Relative risk reduction (%)	38	21	32	30 ^c	$17^{\rm c}$	29.8	32	30.5
P value vs placebo, %	p=0.005	p=0.25	p=0.0034	p=0.02	p=0.227	p=0.03	p=0.0442	p=0.003
Hazard ratio	0.62	0.79	0.680	0.70	0.83	0.70	0.68	0.695
P value vs placebo	p=0.005	p=0.25	p=0.0034	p=0.02	p=0.227	p=0.0279	p=0.0442	p=0.0029
NNT	10.0	00.2	10.4	10.0	20.0	10./	17.1	10.1

bid=twice daily; CDW=confirmed disability worsening; NNT=number needed to treat; qd=once daily.

^a The total number of patients includes those randomized and treated with dimethyl fumarate 240 mg bid, fingolimod 0.5 mg qd, or teriflunomide 14 mg qd, and the respective placebo groups in each study;

^b 3-month CDW at 2 years;

^c relative reduction vs placebo derived from hazard ratios reported in cited source.

Teriflunomide had consistent disability slowing in both Phase 3 trials

Freedman MS et al. MSARD. 2016

Real-World Evidence - MS Base Registry

- RRMS patients with ≥3-month treatment persistence and disability follow-up in MSBase registry
 - 614 on teriflunomide
 - 782 on dimethyl fumarate
 - 2332 on fingolimod
- Followed over 2.5 years and matched using propensity scores
- Outcome: Hazard of disability accumulation; hazard of disability improvement
- Results: no differences in disability accumulation (p≥0.59) or improvement (p≥0.14) were found between therapies

Kalincik T. J Neurol Neurosurg Psychiatry. 2019; 90:458-68

PML Risk

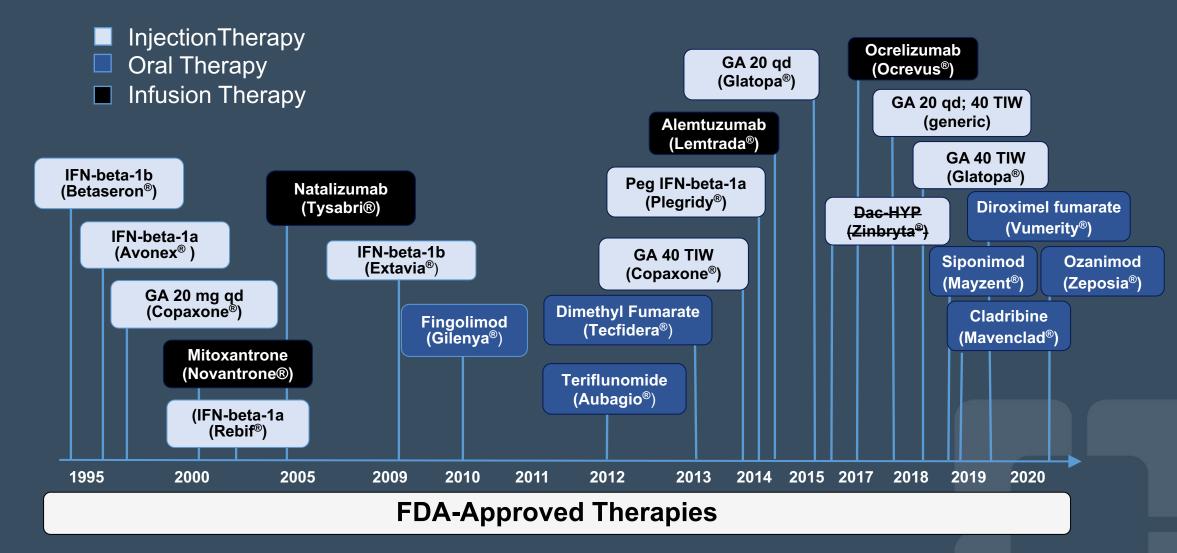
Unlike many other MS therapies, Teriflunomide has low risk fo PML

A PML risk stratification table for disease modifying therapies			
Therapeutic Agent	Treated condition predisposes to PML?		
Class I – high potential risk of PML	No		
Natalizumab	MS and Crohn's disease		
Class II – low potential risk of PML	No		
Dimethyl fumarate	MS and psoriasis		
Fingolimod	MS		
Class III – no or very low potential risk of PML	Yes		
low potential risk of	Hematological malignancies,		
low potential risk of PML	Hematological malignancies, transplantation Lymphoproliferative disorders, rheumatoid arthritis, ANCA-associate		
low potential risk of PML Alemtuzumab	Hematological malignancies, transplantation Lymphoproliferative disorders,		
low potential risk of PML Alemtuzumab Rituximab	Hematological malignancies, transplantation Lymphoproliferative disorders, rheumatoid arthritis, ANCA-associate vasculitis, SLE Non-Hodgkins lymphoma and		
low potential risk of PML Alemtuzumab Rituximab Mitoxantrone	Hematological malignancies, transplantation Lymphoproliferative disorders, rheumatoid arthritis, ANCA-associate vasculitis, SLE Non-Hodgkins lymphoma and leukemia No PML observed with teriflunomide		

Teriflunomide's unexpected success

Given it's modest anti-inflammatory effect, why has teriflunomide been so commercially successful?

Possible explanations:


- Oral daily administration
- Low risk -> easier patient conversations
 - Essentially no PML risk
- Minimal pre-testing
- Reasonably well-tolerated
- Consistent disability & atrophy slowing

Multiple Sclerosis Treatment Landscape and Medical Needs

- Introduction to multiple sclerosis
- Overview of MS therapy landscape
- What to learn from teriflunomide
- Unmet treatment needs in MS

MS Therapy – Do We Need More?

Adapted from Wingerchuk & Weinshenker. BMJ. 2016

Injectibles – interferon- β 1 and glatiramer acetate

- Uncomfortable administration
- Side-effects: flulike (IFNβ1) and rash (glatiramer acetate)
- Modest anti-inflammatory effects
- Essentially no new-starts except for glatiramer acetate

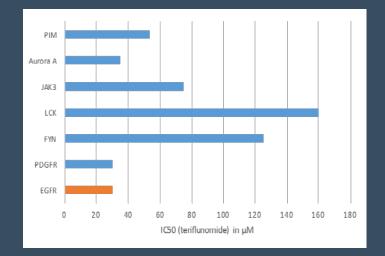
Orals – S1Ps, fumarates

- Pre-testing: blood tests; EKG first-dose monitoring (fingolimod);
- Risk discussion: cardiac (S1Ps) PML small but non-zero; no risk stratification (S1Ps)
- Less disability slowing than inflammation would suggest

Infusions – natalizumab, anti-CD20s

- Frequent infusions (natalizumab)
- Risk discussion: PML (natalizumab>anti-CD20s); infections (anti-CD20s)
- Very long pharmacodynamics 3-6 months (natalizumab); 6-12 months (anti-CD20s)
- Less disability slowing than inflammation would suggest

Teriflunomide


- Side-effects
- High treatment discontinuation rate

Adverse Event	AUBAGIO 14 mg (n=1002)	AUBAGIO 7 mg (n=1045)	Placebo (n=997)
Headache	16%	18%	15%
ALT increased*	15%	13%	9%
Diarrhea	14%	13%	8%
Alopecia⁺	13%	10%	5%
Nausea	11%	8%	7%

Trial	Discontinuation rate
NCT01487086	16.1% (7 mg or 14 mg)
TEMSO	24.9% (7 mg) 26.5% (14 mg)
TOWER	32.9% (7 mg) 34.1% (14 mg)
TENERE	18.3% (7 mg) 19.8% (14 mg)

Teriflunomide

- Side-effects
- High treatment discontinuation rate
- Intensive monitoring: monthly labs for six months; intermittent BP check
- Many off-target effects non-selective inhibitor of numerous protein kinases
- Pregnancy counseling
- Long half-life (16 days) and high accumulation, which requires long wash-out or accelerated clearance

Conclusion

Despite many therapies approved (and nearing approval) for relapsing forms of MS, there remains ample opportunity for a

- safe
- oral
- well-tolerated
- moderately-effective anti-inflammatory, with
- neuroprotective properties beyond what would be expected by reducing inflammation